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di�erence-in-di�erences design has produced starkly conflicting findings that range
from null e�ects to substantively large e�ects. At the same time, as the di�erence-in-

di�erence design on which this research has relied has exploded in popularity, scholars have
documented several methodological issues this design faces—including potential violations of
parallel trends and unaccounted for treatment e�ect heterogeneity. Sadly, these pitfalls (and
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in the United States. We show that studies that find a large positive e�ect of gun violence on
Democratic vote share are a product of a failure to properly specify di�erence-in-di�erences
models when their underlying assumptions are unlikely to hold. Once these biases are
corrected, shootings show little evidence of sparking large electoral change. Our work
clarifies an important unresolved debate and provides a road-map for the many scholars
currently employing di�erence-in-di�erences designs.
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

Gun violence in the United States has a devastating impact on communities, families, and individuals

(e.g., Rossin-Slater et al. 2020). Yet, despite repeated tragedies and public support for policies that

would reduce gun violence, the policy response has been, at best, tepid. This presents an unsolved

puzzle. Why do an abundance of salient mass shootings and a supportive public fail to result in

meaningful policy change to address gun violence? To solve this puzzle, scholars have looked to see

whether mass shootings change electoral incentives and whether a lack of policy changes occurs in

spite of or (perhaps) because of a lack of electoral pressure. In estimating the e�ects of these tragic

shootings on elections, scholars have relied on panel data and di�erence-in-di�erences designs that

exploit variation in the timing and location of shootings. Yet, despite using the same data sources,

previous work has reached starkly di�erent conclusions, with some work finding that mass shootings

have strong electoral e�ects (Garcia-Montoya et al. 2022; Yousaf 2021) and others finding null e�ects

(Hassell et al. 2020).

In this paper, we argue that these conflicting findings are explained by the failure of some work to

account for violations of the parallel trends assumption in their modeling decisions. Core assumptions

to di�erence-in-di�erence approach, particularly the parallel trends assumption, are essential, non-

negotiable requirements for causal inferences.1 Simply, previous work documenting large e�ects of

gun violence on electoral outcomes has done so erroneously because shootings are more likely to

happen in areas already trending towards more pro-Democratic voting patterns long before shootings

happened, whereas areas in the control group—i.e. areas where shootings haven’t occurred—were

naturally trending more Republican. This is likely because mass shootings disproportionately occur

in growing populations and have been increasing over time (U.S. Government Accountability O�ce

1Modeling decisions are just one component of the many researcher degrees of freedom—the many seemingly

small choices in designing, collecting, analyzing, and reporting results—and that can a�ect the conclusions

drawn from di�erence-in-di�erences designs. As such, Gelman and Loken (2013) liken research to a “garden of

forking paths.” Although the parallel trends assumption is the primary driver in the di�erences in conclusions

among work on the e�ects of mass shootings, as we outline below other researcher driven choices can also have

e�ects on the conclusions reached. The e�ects of those choices (including how to measure the outcome, how to

specify the treatment, the functional form of time trends, and how (or at what level) to adjust standard errors) can

also have meaningful e�ects.
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2020; Musu-Gillette et al. 2018), combined with a realignment in American politics in which these

same more populated areas have become consistently more Democratic over time (DeSilver 2016).

As a result, TWFE designs suggest mass shootings have a large e�ect on vote share in presidential

elections up to 20 years before these shootings happened, suggesting critical identification issues with

a TWFE estimator in this particular case.

Models that account for these violations of parallel trends provide little to no evidence mass shootings

cause large and meaningful electoral change in the United States and compelling evidence consistent

with a null e�ect.2 This result is consistent no matter whether we look at all school shootings, just

“rampage-style” shootings, or mass shootings more generally.3

In addition to having value in its own right, resolving the stark di�erences in published findings

on the e�ect of mass shootings on electoral outcomes also provides an useful case to illustrate the

importance of properly navigating potential pitfalls in di�erence-in-di�erences designs. In recent years,

the di�erence-in-di�erences design has proliferated as a means of elucidating causal e�ects, partially

because of its intuitive simplicity and relatively modest data requirements coinciding with a broader

interest in causal inference and “credible” estimates (Angrist and Pischke 2010).4,5 Rapid growth in

2Though some corrected models are unable to rule out a much smaller e�ect, most of these estimates are not

statistically significant and negative e�ects often show up across the small, but reasonable, changes to model

specification well within reasonable researcher degrees of freedom. Moreover, sensitivity analyses that embrace

the uncertainty around exact departures from parallel trends show that the results are highly sensitive to even

minimal reasonable departures from parallel trends. Hence, the preponderance of evidence suggests that a large

e�ect is implausible and smaller positive e�ects debatable at best.
3While claiming “[their] findings hold when [they] replicate [Hassell et al.’s 2020] models” (17) which include

county-specific time-trends, Garcia and colleagues (2022) do not test models with county-specific time-trends

in any of their models in their manuscript, appendix, or replication materials. Although not claiming he does,

Yousaf (2021) also does not include county-specific time trends. None of the three prior papers apply more

recent advances for addressing potential violations of the parallel-trends assumption.
4The data and design demands for executing a di�erence-in-di�erences are light, requiring no instrument that

satisfies the exclusion restriction (as does instrumental variable analysis) nor precise cuto�s (as do regression

discontinuity designs).
5In 2022, there were over 17,000 new papers (and over 100 in political science) employing or discussing this
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

the use of di�erence-in-di�erences has prompted a growing methodological literature covering the

potential and pitfalls of this design (e.g., Roth et al. 2022; Kahn-Lang and Lang 2020; De Chaisemartin

and d’Haultfoeuille 2020).

Thus, while we are most interested in answering the question of whether mass shootings a�ect

party vote shares in the U.S., another purpose of this paper is to help narrow the gap between

theory and application in the use of the di�erence-in-di�erences design in political science. We

do so by 1.) outlining general cautions related to potential biases that arise from A.) violations of

parallel trends and B.) treatment e�ect heterogeneity that researchers should take when implementing

di�erence-in-di�erences designs flowing from recommendations in other disciplines (Roth et al. 2022;

Kahn-Lang and Lang 2020); 2) highlighting the importance of researcher degrees of freedom related

to specifying di�erence-in-di�erences models such as how one codes the treatment, whether to include

time trends at all and, if so, the functional form of those time trends, and how (or at what level) to

adjust standard errors; and 3) implementing them in an applied example. The steps we outline flow

from those recommended in other disciplines (Roth et al. 2022; Kahn-Lang and Lang 2020). Our work

collates recent advances in the di�erence-in-di�erences literature in a single applied example.

Given our strong interest in a particular substantive question, the core of this exploration revolves

around diagnosing and dealing with potential parallel trends assumption violations that arise in

questions of the causal e�ects of gun violence on electoral outcomes. However, we also address other

potential issues; for instance, issues that arise with heterogeneous treatment e�ects. Thus, we provide a

synthesis of the potential issues that may arise in di�erence-in-di�erences designs and the tests one

can use to check for the robustness of their research findings that use the di�erence-in-di�erences

design, particularly in the face of potential parallel-trends assumption violations. We (briefly) outline

the problems that necessitate these checks, describe the logic of these checks, lay out how these checks

are conducted, and point scholars to the statistical tools and resources that have been developed to

employ these checks in practice. This exercise provides an applied example that researchers can use as

a guide in their application of the di�erence-in-di�erences design.

Our work helps provide an answer to an important unresolved debate, shedding light on the political

method across the sciences in a given year (and this number is growing as shown in the online appendix).
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economy of gun violence in the United States, and contributing to our understanding of what events

spark electoral accountability as well as providing some guidance in navigating the promising, but also

perilous, di�erence-in-di�erences design.

1. DIFFERENCE-IN-DIFFERENCES AND THE TWO-WAY FIXED EFFECT

ESTIMATOR

Before jumping into our specific case and how the potential pitfalls in the di�erence-in-di�erence

design explain the divergence in findings, we think it important to explain the predominant approach

scholars use and why those pitfalls exist. Di�erence-in-di�erences designs routinely rely on what has

been termed the two-way fixed e�ects estimator (i.e. the TWFE). With this estimator, the outcome of

interest is regressed on group and period fixed e�ects, along with the treatment status one desires to

estimate. The TWFE approach, using time and unit (often a geographic level) fixed e�ects, controls

for factors remaining constant within years (e.g., nationwide economic conditions), given that the

treatment is not uniformly given in a single instance in time, and for factors varying across spaces

(e.g., stable local area culture) that might impact the e�ect of the treatment implemented. In the

early years of di�erence-in-di�erence designs, these identification strategies were used in the context

of largely exogenous policy interventions, where treatment was implemented in a single instance in

time—uniform across all treated units. This design constitutes a two-group (i.e. treated and not treated)

and two-period (pre and post) design. As De Chaisemartin and D’Haultfoeuille (2022, 3) note “in the

two-groups and two-periods design..., [the di�erence-in-di�erences estimator] is equal to the treatment

coe�cient in a TWFE regression with group and period fixed e�ects.”

Importantly, this design rests on the so called parallel trends assumption, which requires that in

the absence of the treatment, both the treated and the untreated group would have experienced the

same outcome evolution.6 Because of the fundamental problem of causal inference, we do not observe

the counter-factual worlds in which the treated and untreated groups are exposed to the opposite

6As Roth et al. (2022, 2) put it, in the canonical example ”the key identifying assumption is that the average

outcome among the treated and comparison populations would have followed ‘parallel trends’ in the absence of

treatment.” They also layer a related assumption which requires “that the treatment has no causal e�ect before its

implementation (no anticipation).”

4

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate



Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

condition. Hence, the parallel trends is (in a way) not fully testable. However, De Chaisemartin

and D’Haultfoeuille (2022, 2) call the parallel trends assumption “partly testable” as researchers can

“compar[e] the outcome trends of groups [the treatment groups] and [the control group], before [the

treatment group] received the treatment.”7 As an extension of the two-groups and two-periods design,

scholars have also estimated “TWFE regressions in more complicated designs with many groups and

periods, variation in treatment timing, treatments switching on and o�, and/or non-binary treatments”

(De Chaisemartin and D’Haultfoeuille 2022, 3). Recent research has shown that for these more

sophisticated designs, TWFE estimators are unbiased if both the parallel trends assumption holds and

“the treatment e�ect [is] constant, between groups and over time” (De Chaisemartin and D’Haultfoeuille

2022, 3). As we show in more detail below, the failure to account for potential violations of the

parallel-trends assumptions (and treatment e�ect heterogeneity to a lesser extent) ultimately e�ects the

conclusions drawn about the e�ect of mass shootings on election outcomes.

2. DIFFERENCES IN FINDINGS ON THE ELECTORAL EFFECTS OF MASS

SHOOTINGS

In an article published at the American Political Science Review (APSR), Hassell, Holbein, and Baldwin

(2020; hereafter HHB) estimate the e�ect of school shootings (of various sizes) on voter turnout and

election outcomes at the federal, state, and local level.8 HHB find that school shootings—regardless of

7Marcus and Sant’Anna (2021) note that the answer of whether pretreatment tests are illuminative of the parallel

trends assumption “depends on the chosen [parallel trends assumption” one makes. Marcus and Sant’Anna (2021)

discuss parallel trends such as “parallel trends assumption across all time periods and all groups”, the “parallel

trends assumption based on ‘never treated’ units”, and the “parallel trends assumption based on ‘not-yet-treated’

units.” Each of these vary in terms of how informative tests of pre-treatment balance are. (See Marcus and

Sant’Anna (2021, 241-245) for their full discussion of each of these variants.) For other discussions of the

usefulness of pre-trends tests see Kahn-Lang and Lang (2020); Bilinski and Hatfield (2018) and Roth (2022)

and for explorations of potential relaxations of the parallel trends assumption see Manski and Pepper (2018);

Rambachan and Roth (2021) and Freyaldenhoven et al. (2019). (We return to relaxations of parallel trends in our

empirical examinations below.)
8HHB also use regression discontinuity in time to assess e�ects of shootings on voter registration (also a null

result).
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the number of victims—have precisely-estimated null e�ects on vote shares. In contrast, in another

recently published article in APSR, Garcia-Montoya, Arjona, and Lacombe (2022; hereafter GMAL)

seek to isolate the e�ect of “rampage-style” school shootings and find a sizable e�ect of around 5

percentage points on Democratic vote share in presidential elections in the local communities in which

they occur.9 Moreover, some of the plausible alternatives to the specifications GMAL run suggest

an e�ect as large as ⇡ 8.7 percentage points in the election after a mass shooting occurs and some

event-study models using a two-way fixed e�ect (TWFE) specification suggest an e�ect as large as

13 percentage points a full 28 years after a mass shooting occurs. Between these two estimates, in a

article published in the Journal of the European Economic Association, Yousaf (2021) argues that

all mass shootings—not restricted to those occurring at schools—decrease Republican vote share in

presidential elections by 2-6 percentage points (Yousaf 2021).10

Ultimately, the conclusions of GMAL and Yousaf (albeit less so) stand in contrast to HHB’s—with

the former studies suggesting that mass shootings have statistically detectable meaningful e�ects in

the local communities in which they occur, despite relying on the same outcome data (vote share

recorded in Dave Leip’s Atlas of U.S. Elections).11 Our work here shows that results suggesting large

9GMAL emphasize the topline 5 percentage point e�ect in their abstract and throughout various summary points

in their manuscript. Depending on the sample one uses—be it the full pool of observations or only those for

which covariates are available—their naive TWFE are 5.5 and 4.5 percentage points respectively (? < 0.001 in

both cases).
10Unlike HHB, neither GMAL nor Yousaf examine midterms or state or local races.
11We think important to note that all three papers have some common findings. GMAL, Yousaf, and HHB all find

no e�ects of mass shootings on voter turnout (as we show in the Online Appendix (see Figure S10) and turnout

does not appear to have the trend di�erences that plague Democratic vote share (Note: This overall finding is

also corroborated by a recent working paper by Marsh (2022, 21), who finds that changes in turnout after mass

shootings are “not statistically distinguishable from zero.” While Marsh does provide some evidence that mass

shootings close to an election have a slight positive e�ect on turnout (see Marsh 2022, Figure 1), HHB show that

the e�ects of school shootings close to an election on turnout are highly sensitive to model specification (see

HHB, Figure A7) a pattern also somewhat evident in Marsh’s models (see Marsh, Table E2 and E5)). Importantly,

then, given the lack of any substantive e�ect on turnout, any increase in Democratic vote share should come from

persuasion, rather than mobilization, unless gun violence simultaneously demobilizes Republicans and mobilizes
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

e�ects of mass shootings are not robust because they fail to fully account for violations of the critical

parallel-trends assumption. We also illustrate how exploring heterogeneity in treatment e�ects can

illuminate the question of how mass shootings shape elections (if at all).

3. DATA

In e�orts to resolve discrepancies between previous findings on the electoral e�ects of gun violence and

provide a guide for navigating the pitfalls of di�erence-in-di�erences designs, we begin by examining

the key di�erences between all the previous work examining the electoral e�ects of gun violence.12

All prior work uses a common dataset—Dave Leip’s Atlas of U.S. Elections—to document electoral

returns.

In estimating the di�erence-in-di�erence design, one source of researcher degrees of freedom is what

counts as treatment. In our applied case, each study uses slightly di�erent shootings as their treatment.

We outline coding di�erences in the Online Appendix (see Table S1 in the Online Appendix for a

summary of all the di�erences between the studies in data and methodological choices).13 However,

despite what some have previously claimed (GMAL 2022, 821-823), di�erences in data choices and

Democrats at the exact same rates, which is highly unlikely. However, any persuasive e�ect would also likely

show up in attitudinal shifts and previous research on the attitudinal e�ects of mass shootings has disagreed

whether attitudinal e�ects are present and, if they are, whether these e�ects are polarizing or a uniform leftward

shift (Barney and Scha�ner 2019; Hartman and Newman 2019; Rogowski and Tucker 2019). An absence of an

attitudinal shift does not alone undermine GMAL and Yousaf’s results—after all, attitudes aren’t behaviors—but

it provides a theoretical reason to question this result. Ultimately, however, our goal here is to try and settle

the first-order question of whether gun violence has any e�ect on vote shares in the communities in which they

happen. If there was, we could then proceed to adjudicate between mobilization and persuasion mechanisms. As

we show, however, there is virtually no support for any meaningful e�ect on vote shares.
12We are grateful to each of the author teams because in each case, we were successfully able to replicate all their

reported findings using their models and code.
13In short, HHB focus on school shootings occurring between 2006 and 2014 and, in robustness checks, between

2000 and 2018, GMAL focus “rampage-style” shootings between 1980 and 2016, and Yousaf uses the FBI’s

definition of a mass shooting “leading to four or more deaths at one location or crime scene” with data from

2000 to 2016.
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coding are ultimately not what drives divergent findings across studies on the topic.14 Hence, we focus

on the methodological approaches in the rest of this paper.

3A. EFFECT SIZES

Below in our samples, we are interested in not only the statistical significance of the e�ects estimated,

but also their magnitude. While whether an e�ect is small, medium, or large or somewhere in between

is always somewhat in the eye of the beholder, we use several tools to quantify the size of our observed

e�ects. First, we benchmark our estimates to those provided by other similar geographic-based

treatments in the same sample that we employ here. Second, we use equivalence testing to see what

e�ects we are able to rule out. Equivalence testing starts from the perspective that the e�ects are sizable

and then looks for su�cient statistical evidence that this is not the case (Hartman and Hidalgo 2018).

In essence, it changes the statistical test from a di�erence from 0 (the standard in null-hypothesis

significance testing) to test for a sizable di�erence—one determined by researchers. In practice, this is

often done by using the confidence intervals from an estimated e�ect and determining what e�ect sizes

can confidently be ruled out—using the upper and lower bounds allowed by the confidence intervals.

Finally, we note that though statistical significance does not capture the full scope of the size of e�ects,

when our e�ects are not statistically significant we note that this is the case.

4. THE TWO-WAY FIXED EFFECTS ESTIMATOR IN OUR EMPIRICAL CASE

As we detailed previously, the most common approach to estimating di�erence-in-di�erences e�ects

when the treatment varies over time and space is the two-way fixed e�ects estimator (TWFE). This

14Another source of researcher degrees of freedom, and another di�erence between the three papers, is the outcome

measured. GMAL only focus on presidential elections. Yousaf includes gubernatorial, Senate, and House

returns, but only from Presidential election years. However, for reasons unexplained, in Yousaf’s data there are

only 1,715 observations in the House elections and 95.1% of the years are coded as missing. Hence, the model

for House elections omits year fixed e�ects—making it not a true TWFE estimator. Hence, when analyzing

Yousef’s data, we focus on Senate and Gubernatorial elections. HHB look at a much broader set of outcomes,

including presidential, congressional, state, and local elections. Ultimately, however, this di�erence too does not

explain the di�erence in results. Rather, the di�erences stem from di�erences in model specifications. As shown

below, models finding significant e�ects are biased by violations of parallel time-trends assumptions.
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

approach is followed by GMAL and Yousaf, who rely exclusively on county and year fixed e�ects in

their model specifications.15 We replicate this approach with the data provided by HHB although this

is not their primary estimator.16 The TWFE is specified in Equation (1). For our applied example,

.2C represents Democratic vote share in a given county (c) and election period (t), q2 represents a

county fixed e�ect, _C is a year fixed e�ect, n2C is the error term, and ⇡2C denotes the treatment—that is,

whether a county (c) in a given election period (t) is exposed to a mass shooting. V then is the e�ect of

interest—the TWFE of the e�ect of mass shootings on Democratic vote share.17

.2C = q2 + _C + V ⇤ ⇡2C + n2C (1)

With this TWFE estimator, another researcher degree of freedom exists regarding the exact nature

15These papers also include some time varying controls, but the bulk of identifying assumptions come from the

county and year fixed e�ects. In some specifications, Yousaf compares successful shootings with non-successful

shootings and in others includes flexible population time trends. GMAL, in some specifications, use neighboring

counties as the control group, state fixed e�ects instead of county fixed e�ects, or decade fixed e�ects as opposed

to year fixed e�ects.
16HHB include unit-specific time trends.
17Another researcher degree of freedom (of less consequence here) is how to estimate standard errors. If treatment

assignment is completely independent across counties, you would only need to cluster at the county level (Abadie

et al. 2017). However, if treatment assignment is correlated across counties—i.e., when one county in a state gets

a mass shooting, it is more likely that another county gets a mass shooting—then results from the econometrics

literature suggest one would want to cluster at the state level (Abadie et al. 2017). While it may seem like a

better approach to simply cluster at the higher level; this is not a given. Clustering at higher levels than the

treatment put researchers in the position where “to be conservative and avoid bias and to use bigger and more

aggregate clusters when possible, up to and including the point at which there is concern about having too

few clusters” (Cameron and Miller 2015, 333). Indeed, Abadie et al. (2017, 1) show “there is in fact harm in

clustering at too aggregate a level.” Given that there a very limited number of states, and thus a very real concern

of having too few clusters (Cameron and Miller 2015), we cluster all of the results at the level of the treatment

(the county level). Ultimately, however, once models are adjusted for time trends the clustering decision is of less

consequence. This may not be true in all applications, so we advise caution and thoughtfulness in how to cluster

one’s standard errors.
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of the treatment.18 One possibility is to code units exposed to treatment in a given period as being

treated and all other observations—pre- and post-treatment in eventually-treated units and those who

are never treated—as part of the control group. In the mass shooting example, this approach codes all

counties with a mass shooting in a given electoral cycle as being treated, but county-level observations

before and after that electoral cycle (along with those who never have a shooting) as not having been

treated. This approach allows both in- and out-switchers in the treatment. Theoretically, this approach

assumes that any e�ects of mass shootings would be constrained to the immediate electoral cycle only.

Alternatively, another approach is to code treatment so all observations before a shooting occurs would

be in the control group (along with never treated observations), but all observations in treated units

post-treatment coded as treated. In our example, this approach codes all counties with mass shootings

in a election cycle and election cycles that follow as treated, and all counties before—along with those

who never have a mass shooting—as untreated. This means there are no out-switchers. This approach

allows mass shootings to have longer term e�ects, changing the electoral environment both when they

occur and afterward.19

Both approaches are used in practice when estimating di�erence-in-di�erences models. The choice

between the two is a researcher degree of freedom and should be motivated by theory. Here, given a

lack of strong expectations about the temporal e�ects of mass shootings, rather than rely on one of these

assumptions, we use both. (We complement these approaches with an event-study design described

below that explicitly models e�ects in periods before and after shootings with lags and leads.)

18As HHB note, the coding of treatment doesn’t need to be constrained to the county in which a shooting occurs.

As such, HHB examine (and fail to find) e�ects in surrounding counties, as a function of the distance to a

shooting, as a function of the severity of a shooting, and at the national level (with daily voter registration counts

as the outcome). Perhaps because they find e�ects at the county-period level, GMAL and Yousaf do not consider

alternate treatment codings. In this paper, we focus on the shooting in a given county period given that this is the

specification where GMAL and Yousaf argue an e�ect arises.
19Figures S13 and S14 provide visual illustrations of these two approaches (for a random sample of the observations)

using the panelView package developed by Mou et al. (2022a).
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

4a. Two-Way Fixed E�ect Estimates of Shootings’ E�ect on Vote Shares

We start by showing that di�erent conclusions across studies on the electoral e�ects of shootings are

not driven by data choices. Figure 1 removes di�erences in methodological approaches in previous

studies and shows the two-way fixed e�ects models (the methodological choice of GMAL and Yousaf)

using the data from all of the three studies on the electoral e�ects of gun violence. Figure 1 also splits

the results by treatment coding approaches outlined in the last section.

As shown in Figure 1, TWFE specifications consistently produce substantive positive statistically

significant e�ects regardless of the time-frame, what shootings count as treatment—be they “rampage-

style” school shootings (GMAL), school shootings (HHB), or mass shootings more broadly (Yousaf)—

and regardless of how long the treatment applies. In short, TWFE estimates, regardless of the coding

of shootings and treatments used, indicate a positive e�ect of shootings on Democratic vote share that

is statistically significant and substantively meaningful.20 Simply, when using the same model choices,

shootings of di�erent types consistently have the same modeled e�ect. In other words, previous

di�erences in conclusions across studies of the electoral e�ects of gun violence are not due to choices

about how to code shootings that might have an e�ect.

20Using equivalence testing (Hartman and Hidalgo 2018), in the top panel we can rule out e�ects smaller (larger)

than 3.6 (7.3) percentage points and 6.4 (11.0) percentage points for GMAL’s data (top and bottom panel,

respectively), rule out e�ects smaller (larger) than 1.3 (4.5) percentage points and 4.8 (6.8) percentage points for

Yousaf’s data (top and bottom panel, respectively), and e�ects smaller (larger) than 0.5 (4.7) percentage points

and 4.7 (10.7) percentage points for HHB’s data (top and bottom panel, respectively)
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FIGURE 1. Di�erences in Previous Studies’ Estimated E�ect of Mass Shootings on Election
Outcomes Are Not Driven by Data Choices

(a) Only Elections in Counties in Election Cycle When Shootings Occur are Treated

(b) All Elections in Counties After Shootings Occur are Treated

E�ect of mass shootings of various types are very similar (be it only “rampage-style” school shootings (as in the case
of GMAL) school shootings in general (as in HHB) or mass shootings not restricted to school grounds (as in Yousaf).
Estimates include county and year fixed e�ects (i.e. the TWFE estimator) with standard errors clustered at the county
level—i.e. where treatment occurs. The top panel shows e�ect estimates coding only the election immediately after a
shooting occurs as having been treated; the bottom panel considers all counties with a shooting treated if the election
occurs after the shooting did. Model specifications for the top panel for GMAL parallel those in their Figure 4, with the
exception of holding out controls (if controls are included the e�ect is 4.51 percentage points); GMAL don’t run models
equivalent to the bottom panel estimates. Model specifications parallel those in Yousaf Table 4, with a TWFE used to
run a parallel specification across the papers. Model specifications for the top panel parallel those in HHB figure A11;
HHB do not run the bottom panel specification. Coe�cients, standard errors, and p-values are labeled for each coe�cient.
Takeaway: Di�erences in the statistical significance of the e�ects are not due to data choices of HHB, GMAL, or Yousaf.
TWFE estimators suggest that mass shootings—regardless of the data/coding used—increase Democratic vote share in
the county in which a shooting happens by 2.6-8.7 percentage points.
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

We pause to discuss the magnitude of these estimates. An upwards of an 8.7 percentage point shift

in Democratic vote share in a presidential election year (the point estimate derived from GMAL’s data

using the second coding of treatments) is large—as are many of the other estimates. As GMAL note,

these statistically significant e�ects represent “a remarkable shift in an age of partisan polarization

and close presidential elections” (GMAL 2021, 809). We can get a sense of how large the e�ects

are by benchmarking them to other studies using the Leip Data on county level presidential vote

shares and di�erence-in-di�erences designs. For example, Sides et al. (2022, 709) estimate that a

six standard deviation shift in relative television advertising leads to a 0.5-point change in two-party

vote share. Hence, if we believe these results travel, GMAL’s simple TWFE estimates indicate one

school shooting has an e�ect on Democratic vote share equivalent to a shift of approximately 66-104

standard deviations in relative advertising.21 Using an economic comparison—the most common of

retrospective voting treatments—Healy et al. (2017, 1423) show that a “1 percentage-point increase in

mortgage delinquencies increases Democratic vote share by 0.33 percentage points.” Thus, the e�ect

of a ‘rampage-style’ shooting is roughly the equivalent to a 16.7 - 26.4 percentage point increase in

mortgage delinquencies; or, in other words, moving from a world where no one is delinquent on their

mortgages to a world where about 1/5 residents are at risk of losing their homes.

In short, the TWFE models suggests gun violence—regardless of how a shooting is coded—

fundamentally reshapes electoral results in the local communities in which they occur. Is this sizable

relationship, truly, causal and robust? Recent methodological developments provide us a guide to

answer this question.

5. ADDRESSING ISSUES WITH TWO-WAY FIXED EFFECTS ESTIMATORS

Recent research has shown that simple TWFE models can be problematic for important reasons, which

include:

1. violations of the parallel-trends assumption (e.g., Liu et al. 2021; Rambachan and Roth 2021;

21Similarly, the TWFE using HHB’s data likewise suggests that school shootings have a positive e�ect for

Democrats that is equivalent to a 31.2-93.6 standard deviation shift in the relative advertising advantage;

Yousaf’s TWFE estimate likewise suggests an equivalent e�ect of a 34.8-69.6 standard deviation shift in relative

advertising.
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Freyaldenhoven et al. 2021),

2. mistaken inferences derived from heterogeneity in treatment e�ects (e.g., Goodman-Bacon 2021;
Sun and Abraham 2021).

Here we discuss these issues in order and show how to apply the solutions articulated in the literature

using the example of mass shootings’ seeming e�ects on Democratic vote share.

6. ASSESSING & ADDRESSING PARALLEL TRENDS VIOLATIONS

One of the core assumptions to the di�erence-in-di�erences design is the so called parallel-trends

assumption. In its most simple terms, the parallel-trends assumption asserts that the outcomes of

interest from pre- to post-treatment would have moved in parallel among the treated and the non-treated

group if not for the treatment. If the parallel-trends assumption is violated, estimated e�ects will be

biased. Though this assumption is partially untestable because we do not observe treated units in the

control group post-treatment (and vice-versa), if treated and untreated units are not moving together

before treatment exposure, this could signal potential issues leading to bias (Marcus and Sant’Anna

2021; De Chaisemartin and D’Haultfoeuille 2022). There are several ways to assess the potential for

di�erential pre-treatment trends. An appropriate first step is to visually inspect the data to see whether,

prior to treatment, treatment areas are trending in directions di�erent from the control. Then one can

test for treatment e�ects in lagged periods, followed by an examination using event study designs. We

discuss each of these in turn.

6a. Checking for Visual Evidence of Di�erential Pre-Treatment Trends

Figure 2 checks for di�erential pre-treatment trends using data on gun violence and elections separating

counties into two bins; the first (Panel (a)), contains counties with a shooting setting aside all post-

treatment observations, and the second (Panel (b)) contains all counties without a shooting.22,23 This

leaves a set of pre-treatment observations for each county that had a shooting in the sample. Figure 2

illuminates what TWFE models absorb and do not absorb. County fixed e�ects adjust for the di�erences

22Figure 2 use the GMAL data. Figure S10 shows analogous figures for Yousaf and HHB which also show

di�erent trends.
23For the few counties that had multiple shootings in this period, we are coding here the first shooting that occurred

and treating all years after that as post-treatment observations.
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

in Democratic vote share across counties (i.e. the vertical distance between the lightly-shaded lines).

Year fixed e�ects account for di�erences that transcend counties within a given year; that is di�erences

across years (i.e. the horizontal di�erences in the lightly shaded lines). What TWFE models don’t

account for, however, is the possibility that counties’ Democratic vote shares change at di�erent rates

over time, a significant problem in the context of school shootings.

As seen in Figure 2, shootings happen in areas that are—proceeding and unrelated to shootings

themselves—more likely to be trending Democratic relative to the rest of the country over the last 40

years. This is likely because mass shootings disproportionately occur in growing populations and have

been increasing over time (U.S. Government Accountability O�ce 2020; Musu-Gillette et al. 2018)

combined with a realignment in American politics in which these same more populated areas have

become consistently more Democratic over time (DeSilver 2016). This provides a cautionary tale for

other contexts; researchers should take great care generally in instances where demographic/political

change that predates treatment aligns with short-term treatment exposure.

In our case, this (coincidental) pre-treatment trend separation between counties with and without a

shooting becomes especially prevalent after 2004. This is particularly problematic because GMAL

explicitly note the e�ects of shootings on Democratic vote share between 1980 and 2000 are essentially

null (or negative) but that starting in 2004 the positive e�ects on Democratic vote share begin to

increase (Garcia-Montoya et al. 2022, Figure 7). Figure 2 indicates this is the exact time when the

parallel-trends assumption becomes particularly tenuous as areas with and without shootings move

more clearly in opposite directions. Two-way fixed e�ects models do not absorb these trends and, as

such, are likely to be biased in these circumstances.

6b. Checking for Pre-Treatment E�ects with the Model Specifications Used

While Figure 2 shows visual evidence of a likely di�erence in pre-treatment trends, it is not dispositive.

Researchers could tinker with the axes to minimize or exacerbate the appearance of di�erential trends.

Hence, the next check to assess TWFE design validity—and one that should be standard practice—is

to check whether this model specification suggests any impact prior to treatment (Grimmer et al. 2018).

In our case, this placebo test is informative as shootings—something that people cannot precisely
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FIGURE 2. Trends in Presidential Vote in Counties With Mass Shootings Prior to Shootings,
Compared to Trends in Counties Without Shootings

(a) Pre-treatment Trends in Democratic Vote in
Shooting Counties
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(b) Trends in Democratic Vote in Non- Shooting
Counties
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Pre-treatment trends of Democratic vote share in counties where a shooting occurred benchmarked to the trends in
Democratic vote share found in counties where a shooting did not occur. In the panel on the left, the small blue lines mark
the patterns for all counties with a shooting and the bolded blue line captures the average trend across these counties.
The panel on the right shows the same pattern for counties without a shooting. The small red lines mark the patterns for
all counties without a shooting and the bolded red line shows a loess model for counties without a shooting. Takeaway:
Counties that have shootings trended more Democratic even before the shootings occurred, whereas counties without a
shooting trended slightly more Republican. The result is that models will be biased that don’t account for di�erential trends
across counties (i.e. TWFE models) will be biased.

anticipate—should not a�ect Democratic vote shares prior to a shooting. If there are e�ects, we should

be skeptical the TWFE estimate is, indeed, causal (Hansen and Bowers 2008; Angrist and Pischke

2008).

Specifically, this step examines e�ects on lagged measures of the outcome variable by running the

specification listed in Equation (2) below. Equation (2) is the same as Equation (1), except for the

outcome variable. Here, instead of estimating the e�ect of shootings (i.e. ⇡2C) in the election following

the shooting (i.e. .2C), we substitute a lagged version of the outcome variable (i.e. .2C�:). Here :

corresponds to the number of lagged periods one wishes to include. We include seven lagged periods

in our models as the GMAL panel is su�ciently long to do so. However, power considerations may

influence the number of lags used. We recommend scholars, as a first step, look for e�ects in the one

period lag, then look to see how far back they can estimate precise-enough specifications for their
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

applications and then estimate those specifications. As Hartman and Hidalgo (2018) note, tests for

imbalance are context specific and scholars should consider how precise of an imbalance is meaningful

using equivalence testing.

.2C�: = q2 + _C + V ⇤ ⇡2C + n2C (2)

In this case, our imbalances are statistically significant and substantively meaningful. Panel (a) and

(b) (the top section) of Figure 3 show the TWFE model for the various types of shootings on lagged

measures of Democratic vote share.24 (We return to a discussion of Panels (c)-(f) below.) Regardless

of treatment coding, there is substantial imbalance in lagged outcomes.25 We start, on the left of each

panel, with the presidential election 4 years prior to the shooting and work back to up to 7 presidential

elections (i.e. 28 years) prior to when the shooting occurred.26 These vary somewhat by specification,

but tend to range around a 2-7 percentage point e�ect, with most of these being highly significant. This

analysis indicates that mass shootings have a significant and substantive positive e�ect on Democratic

vote shares up to and including 20 years prior to when a shooting occurred and these e�ects are all

substantively meaningful and statistically significant. Simply, the TWFE does not recover balance prior

to shootings, regardless of the data used.

The e�ects shown in panels (a) and (b) of Figure 3 should not exist if TWFE estimators were

uncovering causal e�ects as there is little reason—theoretically or empirically documented—to suspect

that school shootings should have anticipatory e�ects many years prior, given these events are relatively

unexpected in the communities where they occur. In other applications, this may not be true; for

example, in policy evaluation studies there may be reasons for anticipatory e�ects if a policy, say, is

announced before it is implemented. However, anticipatory e�ects are infeasible in the mass shootings

context and di�erences are further evidence that areas that had shootings were naturally trending more

Democrat before a shooting occurred (indicators of a highly likely violation of the parallel-trends

assumption).

24See Tables S13 and S14 for the Table version of the results from (a) and (b).
25HHB control for pre-treatment trends, but using their data with TWFE estimates also produces a 2.2 percentage

point increase in Democratic vote share 4 years before a school shooting (V=0.022, ?<0.073).
26Yousaf’s time-frame is only long enough to look three Presidential election cycles back in time.
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FIGURE 3. The E�ect of Shootings on Election Outcomes Many Years Before
Without Time Trends

(a) Two-way Fixed E�ects Models, Treatment #1
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(b) Two-way Fixed E�ects Models, Treatment #2
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(c) Linear County Trends, Treatment #1
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(d) Linear County Trends, Treatment #2
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(e) Quadratric County Trends, Treatment #1
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(f) Quadratric County Trends, Treatment #2
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E�ect of mass shootings on Democratic vote share in the years prior to when a shooting occurred. Treatment #1 is coded such that only elections with shooting coded as treated; Treatment #2 is coded such that all
elections after a shooting occurs in a county are coded as treated. Years prior span from 4 to 28 years. Estimates for Yousaf can only extend part of that range given the shorter time-frame used in this dataset. All
estimates include county and year fixed e�ects, the second row adds county-specific linear time trends, the third row adds quadratic county-specific time trends. Columns show two ways of coing treatment: . All
models’ standard errors are clustered at the county level—i.e. where treatment occurs. Coe�cients, standard errors, and p-values are labeled for each coe�cient. Takeaway: TWFE estimators show signs of shootings
having an e�ect up to and including 20 years prior to when a shooting occurred. This is not possible, indicating potentially fatal identification issues with this model approach. In contrast, specifications with linear and
quadratic time trends show balance prior to when the shooting occurred.
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

6c. Checking for Pre-Treatment Trends with Event-Study Designs

There is the possibility that these pretreatment e�ects could show up where there is not bias if treatment

in one period (i.e. ⇡2C) was highly correlated with treatment in prior periods (i.e. ⇡2,C�:). In that

limited case, the coe�cient on ⇡2C may show an e�ect if there is an e�ect of ⇡2,C�: on .2,C�: . If this

were the case, there could be pre-treatment e�ects even if there is absolutely nothing wrong with the

research design. For this reason, we recommend not stopping at the lagged outcomes test and also

model the e�ects of lagged and leaded treatment, using an event-study design.

In our application, another way to see the pre-treatment imbalance is to create lag and lead measures

of the treatment variable and set up the model as an event-study design tracing e�ects before and after

treatment (Binder 1998; Armitage 1995). An event-study is a type of di�erence-in-di�erences model

becoming increasingly common given its less restrictive and more transparent modeling assumptions,

but its usage is relatively rare in political science.27 An event-study (usually) preserves the two-way

fixed e�ects, but also includes a series of lagged and lead treatment variables. The event-study

specification is shown in Equation (3) below, where we list treatment in a given county (2) and year

(C), lagged or leaded by the corresponding periods since treatment (:). For simplicity, we show the

event-study model for one pre-treatment period (: � 2), the period when treatment occurs (:), and the

period after treatment occurs (: + 1). As in most event-study designs, the baseline is the period before

treatment occurs (i.e. : � 1) (Binder 1998; Armitage 1995).

.2C = q2 + _C + V�2 ⇤ ⇡2C,:�2 + V0 ⇤ ⇡2C,: + V1 ⇤ ⇡2C,:+1 + n2C (3)

Figure 4 visualizes the event-study with nine pre-election treatments and eight post-treatment periods

included.28 (Table S18 in the Online Appendix provides the estimates that produce Figure 4.) As shown

on the right of Figure 4 (i.e. right of the grey dotted vertical line), there is an immediate, significant,

and substantive jump in Democratic vote share in the election year when a shooting occurs. The TWFE

event-study model also implies that the e�ect of a single rampage-style school shooting grows after the

27A Google Scholar search of articles in the American Political Science Review yields only 11 total articles that

mention an event-study design.
28Here we focus on the GMAL data because this approach requires su�cient observations before and after

treatment and GMAL’s data is the longest of the three studies.
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event occurs, still having an increasingly larger e�ect on Democratic vote share (10-13 points). These

e�ects are statistically significant, substantively meaningful, and allow us to rule out smaller e�ects

using equivalence testing. While not completely impossible—as opposed to the pre-treatment e�ects

documented earlier—it is long-lasting, and the increasing e�ect remains theoretically unexplained.

FIGURE 4. Event-study Estimates Show that TWFE Fails to Account for Pre-Treatment Trends
-.2
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Elections Relative to Shooting

Event-study estimates with county and year fixed e�ects (GMAL data). Baseline election year is shown with a grey dotted
line; as is common, the baseline is one-year prior to when a shooting occurs. Those to the left are pre-treatment years and
those to the right are post-treatment years. Following prior work, we bin our extreme points (Schmidheiny and Siegloch
2019; Baker et al. 2022); in practice, this means that elections 8 and 9 are binned with election 7 given small sample sizes
in these outer bins. The grey dashed line is a reference line for a zero e�ect. Points are point estimates for lags/leads
and bars are 95% confidence intervals. Takeaway: If one only looks at the di�erences in Democratic vote share between
counties that had shootings and those that did not in the years after the shooting, one would conclude that shootings
fundamentally change elections. However, the left of the panel shows that counties that have shootings trended more
Democratic even before the shootings occurred. The increase that occurs after a shooting is entirely consistent with a
general trend towards more Democratic election outcomes. The result is that models that don’t account for di�erential
trends across counties—even if they are done in an event-study framework—will be biased.

However, Figure 4 also illuminates the “e�ect” documented by the TWFE models is unlikely to be

causal as indicative by looking to the left of the baseline period (i.e. left of the grey dotted vertical

line). If the TWFE models were causal, these coe�cients should not be significantly/substantively

distinct from zero. This is not what we observe. Relative to one election prior to when shootings occur,

prior year elections see lower support for Democratic candidates and this underperformance increases

as we move back in time. In other words, vote share trends more Democratic prior to shootings in
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

counties where shootings occur (relative to counties where shootings do not occur). What happens

after a shooting is just a continuation of that trend—as the points themselves are almost a perfect

linear function with elections relative to shootings—and further evidence that the TWFE estimators

are biased in the case of mass shootings and electoral outcomes. Given the value of this approach in

more formally testing for pre-treatment imbalances, we recommend that parameterizing models as an

event-study also become standard in di�erence-in-di�erences applications.

6d. Controling for Any Di�erential Unit-Specific Time Trends

Facing potential violations of the parallel-trends assumption, one potential (and often straightforward)

solution is to adjust for factors—observed or unobserved—leading to pre-treatment imbalances. In

this case, visual inspection (see Figure 2) reveals that treated and untreated units trend in di�erent

directions. A solution is to include unit-specific time trends—in this specific case, count and year

time trends controlling for di�erential trends in Democratic vote share (Wing et al. 2018; Angrist

and Pischke 2008, 2010). The identifying assumption becomes the deviation from county-year trends

captured by the interaction of time with each unit. Identification comes from sharp deviations from

otherwise smooth unit-specific trends.

This specification corresponds Equation (4) which adds a fixed e�ect for each county (2) interacted

with time (C) in the estimation.

.2C�: = q2 + _C + W2⇤C + V ⇤ ⇡2C + n2C (4)

While Equation (4) includes linear county-specific time trends—W2⇤C , the functional form of the trends

included is a potentially influential researcher degree of freedom.29 Modeling county-specific trends

incorrectly could lead to mistaken inferences. As a result, we run a host of model specifications—all

of which take slightly di�erent tacts to adjusting for di�erential pre-trends. In the next section, we

also show various other approaches to adjusting for di�erential pre-trends, including the methods

recently developed by Liu et al. (2021), Freyaldenhoven et al. (2021), and Rambachan and Roth (2021),

29In another approach, we change the dependent variable to the change in Democratic vote share from the election

before shootings occurred to the election in which counties are actually treated. This approach helps skirt the

so-called Nickell bias that arise when considering models with lags and fixed e�ects (Beck et al. 2014).
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described below. We recommend scholars consider running the check of robustness across several

parameterizations of the unit-specific trends, acknowledging higher-order unit specific trends could

face a bias-variance tradeo�, especially in smaller datasets.

Figure 3 (panel (c)-(f)) show the pre-treatment e�ect models with linear and quadratic (i.e. adding

W2⇤C2 to Equation (4)) trends. We also include cubic and quartic county-specific time trends in the

Online Appendix (see Figures S9 and S10). In contrast to the TWFE (panels (a)-(b) in Figure 3), all

models with county-specific trends (panels (c)-(f) in Figure 3) are balanced pre-treatment. Importantly,

these null e�ects (and especially those in more proximate periods) are not driven by an inflation of the

standard errors and allow us to precisely rule out even very modest pre-treatment di�erences using

equivalence testing. For example, 4 years prior to a rampage style shooting, in the linear trends model

(treatment #1) we can rule out pre-treatment e�ects smaller than -0.99 percentage points and e�ects

larger than 0.57 percentage points. These e�ects are much smaller and distinct from the pre-treatment

e�ects we see in the TWFE.

Figure 5 shows estimates for models including linear and quadratic county-specific time trends

on the post-treatment outcomes for the first treatment coding (i.e. only counties with shootings in

that year coded as treated).30 Figure S14 in the Online Appendix shows the results for treatment #2

(i.e. counties with shootings do not revert to the control afterwards). As Figure 5 shows, once we

make this necessary adjustment, the e�ects of mass shootings—be they at school or ‘rampage-style’

only—attenuate heavily. All of the e�ect estimates are much smaller than the original estimates and

virtually all are no longer statistically significant at traditional levels.

Specifically, panels (a) and (b) of Figure 5—the e�ect estimates for rampage style school shootings

(i.e. GMAL’s treatment)—indicate a 0.7 percentage point increase in Democratic vote share, an e�ect

that is no longer statistically significant but still fairly precise. Substantively speaking, this e�ect is

7.9 times—i.e. 790%—smaller than the original TWFE.31 Using equivalence testing, we can rule out

e�ects as large as the TWFE with a high degree of confidence. For example, in the rampage school

shootings treatment (i.e. GMAL’s treatment) with linear trends, we can confidently rule out e�ects

larger than 1.5 percentage points. The same holds for the Yousaf data, which are no longer in the 3-6

30See Tables S19-S22 for the model estimates that produce these figures.
31Using the second treatment coding, the e�ect is 7.3 times smaller than the original TWFE.
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

percentage point range, but now hover almost exactly at zero.32 None of these e�ects are statistically

significant once trends are added (p > 0.77 in all specifications). And using equivalence testing based

on the estimate from the linear trends model we can rule out e�ects larger than 1.18 percentage points.

Finally, all of the e�ects using HHB’s data are very close to zero, not significant, and powered su�cient

to allow us to rule out very modest e�ects using equivalence testing. Simply, regardless of the data

used, there is no clear evidence of the large e�ects documented in previous work finding an e�ect, and

no consistent evidence for e�ects that are statistically distinguishable from zero.33 While statistically

significant e�ects infrequently show up in Figure 5, they are not robust. Notably, if we add higher-order

polynomials—-as we do in Figure S9 in the Online Appendix—no e�ects are significant. This—along

with further checks below—bolsters the argument that we cannot support the conclusion that shootings

have significant and meaningful e�ects on Democratic vote shares.34

Adding leads and lags of the treatment values and using an event-study design that accounts for the

32As shown in Figure S14, Yousaf’s e�ects are not significant in 3/4 of the models run with the second treatment

coding.
33One concern might be that adding time trends adding time trends artificially inflates our standard errors to levels

that are unpalatable. That said, confidence intervals remain relatively small in models with linear time trends.

They are slightly less precise with quadratic time trends, but the confidence intervals are, to our eye, still quite

tight with this specification and the cubic/quartic specifications shown in the Appendix.
34Moreover, the null e�ects (once accounting for time trends) continue in robustness checks run by GMAL

and Yousaf. In Yousaf’s original comparison of shootings versus failed shootings, estimates range from 1.2

to 2.5 percentage point gain for Democrats (p < 0.05 in all specifications). As HHB note, there are reasons

to count neighbor counties as treated counties or consider them partially treated as a function of distance to

the shooting. However, once linear or quadratic time trends are added, e�ect estimates are only 0.04 to 1.4

percentage points, with none close to statistical significance. With only year and county fixed e�ect’s GMAL’s

original estimates using neighboring counties as the control indicate a 4.3 percentage point gain for Democrats

from a ‘rampage-style’ shooting. Once linear (V = 0.5 percentage points; p<0.61) or quadratic time trends (V =

0.5 percentage points; p<0.64) are added, this e�ect attenuates and becomes not distinct from zero. GMAL also

run model specifications with state and decade fixed e�ects. However, it is not clear why these models should be

treated as good as models with county fixed e�ects given they do not absorb county-specific factors. However,

e�ects also attenuate dramatically if we add trends to these models.
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FIGURE 5. E�ects of Mass Shootings on Presidential Elections After Absorbing County-Specific
Trends

(a) Linear County Trends (b) Quadratic County Trends

(c) Linear County Trends, Change in DV (d) Quadratic County Trends, Change in DV

E�ect of mass shootings of various types once we account for di�erential trends in Democratic vote share across counties
in the United States. Within each panel, the first 3 estimates are using the GMAL coding of mass shootings and their data,
the next comes from HHB, and the last comes from Yousaf. The upper left panel shows specifications with linear county
trends, the upper right panel shows specifications with quadratic county trends, the bottom left panel shows specifications
with linear county trends and using a change in Democratic vote share over the prior 4-year-previous election, the bottom
right panel shows specifications with quadratic county trends and using a change in Democratic vote share over the prior
4-year-previous election. Coe�cients, standard errors, and p-values are labeled for each coe�cient. Cubic and quartic
specifications, see Figure S9. For e�ects where we code all post-shooting counties as being treated—not just counties
and years with shootings—see Figure S14. Takeaway: Once we account for di�erential trends across counties, the
e�ects of mass shootings—be they located on school grounds or not, or be they rampage style or not—are all smaller and
precisely-estimated.

di�erential pre-treatment trends bolsters these conclusions as e�ects are even smaller and more precise.

Figure 6 uses the suggestions developed by Freyaldenhoven et al. (2021) to display event study designs

and account for pre-trends in event-study designs.35 (Tables S23-S26 show the coe�cients that produce

35This approach uses the treatment variable that codes treatment only in the time period.

24

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate



Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

these figures.) Figure 6 uses the same y-axis as Figure 4 for ease in comparing across the two. Once

trends are added, the pre-treatment imbalances identified by the TWFE model are heavily attenuated. So

too, however, do any meaningful post-treatment di�erences. Rather than a 5-13 percentage point e�ect,

the immediate e�ect of ‘rampage-style’ school shootings is a 0.8 percentage point bump for Democrats.

This e�ect is just statistically significant at the unadjusted levels in the linear trends models (p=0.048).

However, this estimate still allows us to confidently rule out e�ects of the variety estimated by GMAl;

we can rule out e�ects larger than 1.67 percentage points using equivalence testing. This e�ect is not

significant at the 5% level, but is at the 10% level, in the quadratic trends model (p<0.066); in this

model specification we can rule out e�ects larger than 1.71 percentage points.36 These e�ects appear to

be the upper bound produced from this method. If we use a slightly di�erent approach to estimating the

event-study with trends—that developed by Clarke and Tapia-Schythe (2021) and the corresponding

eventdd command in STATA—we get estimates that negative (albeit statistically indistinguishable

from zero). With this slightly di�erent approach, the e�ect in the first period following the shooting is

-0.13 percentage points, with a p-value of 0.898 and a 95% confidence interval that spans from -2.05 to

1.80 percentage points.37 Moreover, the results are not robust to alternate shooting codings; the e�ect

for the HHB data/coding is just 0.36 percentage points (p = 0.745; 95% CI: [-1.8, 2.5]). Moreover,

if we test the robustness of these e�ects to other pre-treatment periods—as the approach designed

by Freyaldenhoven et al. (2021) allows—the e�ects are even smaller and even less suggestive of an

e�ect (see Figures S2-S5 in the Appendix). Benchmarked to the two-period lag trend, the estimate

in first election after a shooting for the linear county trends model is a mere 0.47 percentage points

(p=0.324); the 95% confidence intervals for this estimate span from very modest negative e�ects to very

modest positive e�ects (95% CI: [-0.5, 1.4]). Benchmarked to the two-period lag trend, the estimate in

first election after a shooting for the quadratic county trends model is a mere 0.5 percentage points

(p=0.359); the 95% confidence intervals span from very modest negative e�ects to very modest positive

36In the GMAL data, most of the evidence for an e�ect shows up in the rampage-style shootings with killings

(14C0=1.0 percentage points; p=0.064; 95% CI: [-0.05, 2.1]) as opposed to rampage-style shootings without

killings (14C0=0.45 percentage points; p=0.550; 95% CI: [-1.0, 1.9]).
37Estimates from the linear trends model; those with a quadratic county-specific trend are: -0.09 percentage points,

with a p-value of 0.927 and a 95% confidence interval that spans from -2.1 to 1.90 percentage points.
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e�ects (95% CI: [-0.5, 1.5]). Moreover, none of the large longer-term e�ects—i.e. those beyond the

first year—remain in these event study models.

In short, in an event-study that adjust for unit-specific trends, there is little evidence for an e�ect of

the size suggested by the TWFE in the election following a shooting. In fact, there is little evidence

for any significant e�ect. The intermittent e�ects that do cross the p < 0.05 threshold are not robust

to reasonable model variations, such as the baseline comparison points one uses. And the estimates

are fairly precise; allowing us to rule out very modest e�ect sizes using equivalence testing. In most

specifications, our 95% confidence intervals include very modest negative and very modest positive

e�ect estimates.

6e. Implementing Additional Checks that Address Potential Violations of
Parallel-Trends Assumptions

Including unit-specific time trends, as we have done above, is not the only solution to violations of the

parallel-trends assumption; nor is it likely to be the solution in all applications as scholars may desire

a more flexible solution. Recent advances in the di�erence-in-di�erences literature have suggested

alternative solutions to potential violations of parallel-trends assumptions or the presence of unobserved

time-varying confounders. We recommend that scholars implement, at minimum, checks suggested by

Liu et al. (2021) and Rambachan and Roth (2021), as outlined below.

Liu et al. (2021) develop procedures—including what they call the fixed e�ects counterfactual

estimator, the interactive fixed e�ects counterfactual estimator, and the matrix completion estimator—to

“estimate the average treatment e�ect on the treated by directly imputing counterfactual outcomes

for treated observations” (1).38 Using simulations, Liu et al. (2021) show that the interactive fixed

e�ects counterfactual estimator provides more reliable causal estimates than conventional TWFE

models when unobserved time-varying confounders exist. The interactive fixed e�ects counterfactual

estimator can be applied with the package panelView, which is available in both Stata and R and

allows for estimation of their various estimators and dynamic treatment e�ects plots (Mou et al.

2022b,b). As stated in their Stata package, “these estimators first impute counterfactuals for each

38This approach uses the treatment variable that codes treatment in all treated units post-treatment as having been

exposed.
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FIGURE 6. Event-study Estimates of Shootings After Absorbing County-Specific Trends
(a) Rampage Shootings
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(b) Rampage Shootings with Fatalities
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(c) Rampage Shootings with No Fatalities
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(d) All School Shootings
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Event-study estimates from the HHB and GMAL data with county and year fixed e�ects and county-specific quadratic
time trends. These use the method developed by Freyaldenhoven et al. (2021) to account for pre-trends in event-study
designs. Analysis executed using the xtevent and xteventplot commands in STATA (Freyaldenhoven et al. 2022).
These commands, as a default, plot both the standard confidence intervals and those developed by Montiel Olea and
Plagborg-Møller (2019), which were developed for contexts with dynamic e�ects. As is common, the baseline is one-year
prior to when a shooting occurs and is shown with a gray dotted line; other year baseline comparisons are shown in
the Supplementary Appendix (see Figures S1-S4). Those to the left are pre-treatment years and those to the right are
post-treatment years. The grey dashed line is a reference line for a zero e�ect. Points are point estimates for lags/leads
and bars are 95% confidence intervals. Figure uses the same y-axis as Figure 4 for ease in comparing across the two.
The bottom row shows e�ects with and without fatalities; these models use quadratic county trends Takeaway: Once time
trends are taken into account in event-study models, the e�ect of shootings attenuates considerably.

treated observation in a TSCS dataset by fitting an outcome model using the untreated observations.

They then estimate the individualistic treatment e�ect for each treated observation by subtracting the

predicted counterfactual outcome from its observed outcome. Finally, the average treatment e�ect on

the treated (ATT) or period-specific ATTs are calculated.” Their work builds on research exploring

factor-augmented models for applications surrounding causal identification (Bai 2009; Bai and Ng
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2021; Gobillon and Magnac 2016; Xu 2022).

Figure 7 applies the interactive fixed e�ects counterfactual estimator to our example using GMAL

data. (See also Tables S27-S30.) Panel (a) shows the TWFE and panels (b)-(d) show interactive fixed

e�ects counterfactual estimators. In the TWFE model, there are pre-treatment imbalances and a general

overall upward trend—as shown in Figure 5 previously. Again, this suggests that the TWFE may be

picking up on a general trend towards more Democratic votes in pre-treatment periods. However,

once pre-treatment di�erences are adjusted for in models specifically developed by Liu et al. (2021)

to address pretreatment imbalances, the overall evidence again does not support the argument that

shootings substantially or significantly a�ect vote shares in the years following shootings. Again, this

is not for a lack of statistical power. All e�ects are comparatively modest and the confidence intervals

are precise enough to rule out very modest e�ects using equivalence testing. Moreover, any (smaller)

e�ects that appear intermittently are not robust to reasonable model variations in researcher degrees of

freedom.

Rambachan and Roth (2021) propose another solution to situations where parallel-trends assumptions

are unlikely to hold.39 Rather than forcing researchers to decide a rigid and exact functional form,

Rambachan and Roth (2021) propose a sensitivity analysis approach to potential violations of the

parallel-trends assumption. Rambachan and Roth (2021)’s sensitivity analysis avoids researchers

having to arbitrarily choose a parametric model for the violations of pre-trends. This sensitivity

approach is particularly useful as researchers may often struggle to know the functional form of the

underlying system they are studying.

This sensitivity analysis can be formalized in three ways. First, researchers can choose to see how

robust their e�ect is to (unobserved) post-treatment departures of parallel trends by bench-marking to

the (observed) maximum pre-treatment violation of parallel trends. They call this the '" approach,

which stands for for “relative magnitudes.” In this approach, researchers choose di�erent values of " ,

which measures how much of the maximum pre-treatment violation of parallel trends would lead the

e�ects to include null e�ects in the confidence set. Rambachan and Roth argue that this approach is

reasonable, for example, if “the researcher suspects that possible violations of parallel trends are driven

39This approach uses the treatment variable that codes treatment only in the time period.
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FIGURE 7. Liu et al. (2021) Interactive Fixed E�ects Counterfactual Estimator
(a) Two-way Fixed E�ects
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(b) Interactive Fixed E�ects (1)
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(c) Interactive Fixed E�ects (2)
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(d) Interactive Fixed E�ects (3)
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Figure shows the interactive fixed e�ects counterfactual estimator developed by Liu et al. (2021) using GMAL’s data.
The top left panel shows the TWFE estimated by Liu et al.’s (2021) FECT package; it is analogous to Figure 5, but their
procedure estimates slight di�erences in the number of pre- and post-treatment periods. In the top right panel, the number
of factors (A) is set to 3—that chosen by cross validation and the degree of the polynomial is set to 4. In the bottom row, A
is set to 1 in both panels and degree 2 and 4, from left to right. For other variations, see the Online Appendix. Takeaway:
The upward trend in the TWFE model is indicative of violation of the parallel trends assumption; evidence that treated and
untreated units were on considerably di�erent paths pre-treatment; TWFE don’t control for this. In the interactive fixed
e�ects models, there is no evidence of the substantial e�ects shown in more simplistic model specifications that do not
account for potential violations of the parallel-trends assumption.

by confounding...shocks that are of a similar magnitude to confounding...shocks in the pre-period”

(Rambachan and Roth 2021, 12). Second, researchers can choose to see how robust their e�ect is to

varying departures from di�erential trends evolving smoothly over time. This may be especially useful

when “researchers may be worried about confounding from secular trends (e.g. long-run changes in

labor supply) that they suspect evolve smoothly over time” (Rambachan and Roth 2021, 13). This

sensitivity test is “done by bounding the extent to which the slope may change across consecutive
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periods” (Rambachan and Roth 2021, 12). Under this approach, “the parameter " governs the amount

by which the slope...can change between consecutive periods, and thus bounds the discrete analog of

the second derivative” (Rambachan and Roth 2021, 13). They call this the (⇡ approach, which stands

for for “second derivative” and/or “second di�erences.” Finally, researchers can combine these two

approaches in the (⇡'" condition. This approach “assume[s] that the possible non-linearities in the

post-treatment di�erence in trends are bounded by the observed non-linearities in the pre-treatment

di�erence in trends” (Rambachan and Roth 2021, 13). Under this approach, " is the parameter the

research varies, which allows the researcher to set “bounds [for] the maximum deviation from a linear

trend in the post-treatment period by " � 0 times the equivalent maximum in the pre-treatment period.”

Rambachan and Roth note that (⇡'" is similar to (⇡, “except it allows the magnitude of the possible

non-linearity to explicitly depend on the observed pre-trends” (Rambachan and Roth 2021, 13).

With Rambachan and Roth’s (2021) general approach, the conclusions of di�erence-in-di�erences

specifications do not depend on arbitrary choices of model specification. Rambachan and Roth’s

approach relaxes the strong parametric assumptions behind county-level linear or quadratic trends by

bounding how much the trend can deviate from linearity and/or bounding the maximum violation of

parallel-trends by the maximum pre-treatment violation. In essence, this approach “show[s] what causal

conclusions can be drawn under various restrictions on the possible violations of the parallel-trends

assumption” (Rambachan and Roth 2021, 1). This approach is implementable through the HonestDID

package in R Rambachan and Roth (2021). They articulate their approach and provide guidance for its

execution here. There is not currently a corresponding HonestDID package in STATA.

Rambachan and Roth (2021, 28) note “it is natural to report both the sensitivity of the researcher’s

causal conclusion to the choice of this parameter and the ‘breakdown’ parameter value at which

particular hypotheses of interest can no longer be rejected.” We do this in Figure 8 below using GMAL’s

data. Our analyses replicate Rambachan and Roth’s three di�erent sensitivity approaches outlined

above. The top left panel of Figure 8 shows a sensitivity analysis for the (⇡ approach by plotting robust

confidence sets for the treatment e�ect in the mass shooting case for di�erent values of the parameter " .

The confidence sets show that the e�ect of mass shootings on Democratic vote share is only positive

and significant in the coe�cient on the far left indicating the e�ect of mass shootings is highly sensitive.
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Having such a low breakdown value suggests that any meaningful departure from smoothness, that is

any departure of the slope changing between consecutive periods, would cause the observed e�ects in

the GMAL data to not be significant. Similarly, the top right panel shows a sensitivity analysis for

di�erent values of " under the '" approach. With a very small breakdown value of around 0.0, there

is even further evidence that the results are highly sensitive. In post-treatment trends were even 1/20th

the size of those observed in the pre-treatment set, we would include a null e�ect in our confidence

sets. Finally, the bottom panel shows the results from the (⇡'" approach. These results too suggest

a high degree of sensitivity to even very modest departures from the assumption that the possible

non-linearities in the post-treatment di�erence in trends are bounded by the observed non-linearities in

the pre-treatment di�erence in trends. In total, these results indicate the e�ect of shootings on vote

shares is highly sensitive to violations of the parallel-trends assumption.

We note one final thing about addressing violations of parallel trends. In choosing the method to

address this core issue, it is important to consider the exact nature of the data one has available to them,

the statistical power that they have, and the amount of corresponding numerical degrees of freedom.

We are not arguing that every case should employ unit-specific trends, for example. What we are

arguing is that all researchers should diagnose and address potential violations of this core assumption.

How they do so—with the many tools at their disposal that we have outlined above—is less important

than that they do so.

7. DIAGNOSING AND ADDRESSING TREATMENT EFFECT
HETEROGENEITY/REMOVING CONTAMINATED COMPARISONS

Recent research has also shown that issues arise with the TWFE with variations in the treatment timing

when there is heterogeneity of treatment e�ects across the time since treatment or across units. If there

is heterogeneity in time since treatment only, the TWFE “corresponds with a potentially non-convex

weighted average of the parameters” (Roth et al. 2022, 12). Goodman-Bacon (2021) shows that in

this scenario, the TWFE can be written as “a convex weighted average of di�erences-in-di�erences

comparisons between pairs of units and time periods in which one unit changed its treatment status and

the other did not. Counterintuitively, however, this decomposition includes di�erence-in-di�erences

that use as a ‘control’ group units who were treated in earlier periods. Hence, an early-treated unit can

A
PS

R
Su

bm
is

si
on

Te
m

pl
at

e
A

PS
R

Su
bm

is
si

on
Te

m
pl

at
e

A
PS

R
Su

bm
is

si
on

Te
m

pl
at

e
A

PS
R

Su
bm

is
si

on
Te

m
pl

at
e

A
PS

R
Su

bm
is

si
on

Te
m

pl
at

e
A

PS
R

Su
bm

is
si

on
Te

m
pl

at
e

A
PS

R
Su

bm
is

si
on

Te
m

pl
at

e
A

PS
R

Su
bm

is
si

on
Te

m
pl

at
e

A
PS

R
Su

bm
is

si
on

Te
m

pl
at

e
A

PS
R

Su
bm

is
si

on
Te

m
pl

at
e

31



Anonymised Author(s)

FIGURE 8. Implementing Rambachan and Roth’s Sensitivity Analysis in the Shooting Example
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Results from the sensitivity analysis suggested by Rambachan and Roth (2021) using GMAL’s data; that is, testing for
e�ect sensitivity across 4(⇡ ("), 4'" ("), and 4(⇡'" ("). The models incorporate information from 3 elections prior
to treatment and 5 post-treatment periods. Takeaway: The results show that the e�ect of shootings on vote shares is
highly sensitive and does not hold with any meaningful deviation from parallel-trends.

get negative weights if it appears as a ‘control’ for many later-treated units” (Roth et al. 2022, 12).40

The event study design does not address this concern; indeed, as Sun and Abraham (2021) show, using

event-study regressions like the one in equation 5 may lead to erroneous conclusions in the presence of

heterogeneity.

Goodman-Bacon (2021) provides an approach to decompose the 2x2 di�erence-in-di�erence

estimates embedded in the TWFE with staggered treatment using the bacondecomp package in R

and STATA Goodman-Bacon et al. (2019); Goodman-Bacon (2021).41 We provide this decomposition

in Figure 9.42 (The weights for the Goodman-Bacon decomposition are reported in Tables S33 and

40For more details see Goodman-Bacon (2021) and Roth et al. (2022, 11-13).
41With this approach, we make the panel balanced and code all post-treatment units as treated.
42For another weighting decomposition approach, see de Chaisemartin et al. (2019). We provide a summary of
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S34 in the Appendix.) As can be seen, a few interesting patterns emerge. First, in both the GMAL

and HHB data the TWFE is a composite of 2x2’s that elicit large negative and large positive e�ects.

Depending on which of the 2x2’s one includes in the estimate, the e�ect can be very di�erent (as seen

by looking at the spread of estimates across the y-axis). Second, it appears that the TWFE in this

case are a composite that weights highly by several few comparisons of always treated vs. timing.

However, many of the 2x2 estimates have similar weight—as noted by the cluster of estimates on the

left side of the graph. Overall, to our eye, there appears to be no clear evidence our e�ects are driven

by treatments of various types. Still, we think it important to note that for several reasons the mass

shooting example is not an ideal application to show the value of Goodman-Bacon decomposition as

(at present) the Goodman-Bacon decomposition only decomposes the TWFE and does not decompose

the more sophisticated models we implemented to account for potential parallel-trends assumption

violations. Nevertheless, what we observe in the mass shootings context may not always be true,

and so scholars using di�erence-in-di�erences estimators with staggered treatment should adopt this

decomposition as a standard diagnostic test to illuminate the extent to which the TWFE is driven by

specific types of comparisons.

FIGURE 9. Illustration of the Goodman-Bacon Decomposition of the TWFE Models
(a) Bacon Decomposition - GMAL
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(b) Bacon Decomposition - HHB
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Figure shows the results from the Bacon decomposition for the TWFE models. The figure shows all of the possible 2x2
di�erence-in-di�erences, with their weights for the ATE on the x-axis and the e�ect size on the y-axis. Takeaway: There
are no comparisons with negative weights in our application of the e�ects of mass shootings on electoral outcomes and no
clear evidence e�ects are driven by treatments of various types.

these weights in Tables S8 and S9 in the Appendix.

A
PS

R
Su

bm
is

si
on

Te
m

pl
at

e
A

PS
R

Su
bm

is
si

on
Te

m
pl

at
e

A
PS

R
Su

bm
is

si
on

Te
m

pl
at

e
A

PS
R

Su
bm

is
si

on
Te

m
pl

at
e

A
PS

R
Su

bm
is

si
on

Te
m

pl
at

e
A

PS
R

Su
bm

is
si

on
Te

m
pl

at
e

A
PS

R
Su

bm
is

si
on

Te
m

pl
at

e
A

PS
R

Su
bm

is
si

on
Te

m
pl

at
e

A
PS

R
Su

bm
is

si
on

Te
m

pl
at

e
A

PS
R

Su
bm

is
si

on
Te

m
pl

at
e

33



Anonymised Author(s)

Several solutions to the problems that arise with heterogeneous treatment e�ects have been proposed.43

Some allow for the extension of their approach to include additional covariates beyond two-way fixed

e�ects, including unit-specifc trends; others do not. One approach that does allow for the extension

43Three other solutions to treatment e�ect heterogeneity problems identified in the literature are worth mentioning.

The di�erences between these are nuanced and not all may be well-suited in some applications. First, like Sun

and Abraham (2020), Callaway and Sant’Anna (2021) argue that scholars should use a method that restricts to

“clean comparisons” applying to scenarios where “(i) multiple time periods, (ii) variation in treatment timing,

and (iii) when the ‘parallel-trends assumption’ holds potentially only after conditioning on observed covariates.”

This approach facilitates the estimation of propensity scores conditional on observed covariates to help achieve

pre-treatment balance. With this approach, we make the panel balanced and code all post-treatment units

as treated as doing so is more appropriate for this approach. We show this approach in Figure S19 in the

Online Appendix. Unfortunately, this approach has limited value in our application for two reasons. First, even

when one uses “clean comparions” as suggested by Callaway and Sant’Anna (2021) and covariates, di�erential

pre-treatment trends issues remain. Second, their approach does not yet extend to models with unit-specific time

trends. These may be less of an issue in other applications, so we include these as an illustration of this method

and its results. Second, De Chaisemartin and d’Haultfoeuille (2020) provide an alternate approach for assessing

and addressing implemented in the did_multiplegt package in STATA and DIDmultiplegt package in

R de Chaisemartin et al. (2019); Zhang (2022). With this approach, we code all post-treatment units as treated as

doing so is more appropriate for this approach. Unfortunately, this approach only allows linear trends and doesn’t

allow for flexibility in other model parameters that approaches like Sun and Abraham (2021) a�ord and is more

computationally intensive. Still, to illustrate this method, we provide the results for this in Tables S8 and S9 in

the Appendix. Finally, (Borusyak et al. 2021, 1) use “an intuitive ‘imputation’ form [where] treatment-e�ect

heterogeneity is unrestricted.” This approach is implemented in the did_imputation package in STATA and

didimputation package in R (Borusyak 2022; Butts 2022). We use the treatment of coding treatment only

in the current period as it is more appropriate to do so for this approach. When we implement this approach, we

still see a sizable e�ect both pre- and post-treatment in the TWFE. Unfortunately, this approach is not currently

designed to implement with unit specific trends in our example. Though the package technically does allow

trends, the help file warns users to “Use [trends] with caution: the command may not recognize that imputation

is not possible for some treated observations.” This appears to be the case in our application.
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

of including unit-specific trends is Sun and Abraham (2021).44 This approach is implemented in

the eventstudyinteract package in STATA and fixest package in R (Sun 2021; Berge et al.

2022).45 This approach “estimates the shares of cohort as weights.” In our case, implementing Sun and

Abraham’s solution with with a simple TWFE significantly cuts down on the e�ect estimates provided

by GMAL. At first, these changes look modest. In the first treatment period, the event study estimates

go from 3 percentage points (p = 0.000) in the naive models to 2.4 percentage points (p = 0.001) in the

Sun and Abraham adjusted models. However, in the second and following treatment periods, the e�ect

that is large as 10-13 percentage points in the naive event study heavily attenuates and even becomes

negative (though not significant—being 1.1 (p=0.19), -0.4 (p=0.75), -2.2 (p=0.12), and -1.5 (p=0.18)

percentage points in post-treatment elections 1-4 respectively. Once we add unit-specific trends to

Sun And Abraham’s estimator, the e�ect gets even smaller. We go from 2.4 percentage points (p =

0.001) in the TWFE to 1.46 percentage points in the model with linear trends (p=0.031), quadratic

(p=0.051), or cubic trends (p=0.085)—with the results becoming less significant with each. (Even

in the cubic model, the standard error remains modest in size–being 0.8 percentage points.) With

trends, the long-run e�ect of 10-13 percentage points is not present. Moreover, none of the e�ects are

present in the HHB data. This suggests that e�ect heterogeneity plays some role. Once adjusted for,

long-term e�ects attenuate substantially and short-term e�ects become much more modest and flimsier

to reasonable specifications within the realm of researcher’s arbitrary decision-making (e.g. the coding

of treatment, the functional form of the unit-specific trends that one includes, and election di�erences

between HHB and GMAL).

For reasons we outline below, we think it unwise to cherry-pick one model specification above.

Combining the evidence from all of the various approaches taking into account potential contamination

from treatment e�ect heterogeneity, the best evidence suggests that 1.) violations of parallel trends

loom large in this context, 2.) e�ect heterogeneity may play a modest role in this application, and 3.)

there is no sign of the sizable and durable e�ect on Democratic vote shares, but perhaps a much smaller

e�ect—and one that is not clearly distinct from zero across all reasonable model specifications and is

sometimes even negative in some specifications. That said, these lessons may not always be true in

44Our results are robust to excluding never-treated observations using Sun and Abraham (2021).
45With this approach we make the panel strongly balanced and use the treatment in the current period coding.
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FIGURE 10. Sun and Abraham’s (2020) Approach For Estimating Dynamic Treatment E�ects in
Event Studies with Heterogeneous Treatment E�ects
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(b) HHB
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Results from the clean comparisons suggested by Sun and Abraham (2021) using GMAL and HHB data. We focus on
these two for two reasons 1.) these treatments are most similar 2.) the Yousaf panel and coding of mass shootings does
not recover pre-treatment balances using Sun and Abraham (2021)’s method. Models include quadratic county-specific
time trends to address potential violations of the parallel-trends assumption in the TWFE. Takeaway: Clean comparison
e�ects with trends show no sign of a sizable and durable e�ect on Democratic vote shares shown in the TWFE nor in the
simple event-study plot (see Figure 5 above).

other applied contexts. Hence, we recommend that scholars include tests for both parallel trends and

treatment heterogeneity and implement the solutions suggested in the literature as we have done above.

8. ASSESSING OTHER POTENTIAL ISSUES RAISED IN THE ECONOMETRICS
LITERATURE ON EXECUTING A DIFFERENCE-IN-DIFFERENCES DESIGN

A few final words of guidance and caution remain when using the di�erence-in-di�erences approach.

First, in all of the empirical checks, it’s important to not forget theory. For example, in the analyses

above, we have focused on whether shootings change Democratic vote shares in the counties in which

they occur. We have done so because whether or not an e�ect occurs here is the central dispute in this

literature. However, it is possible this is not conceptually how mass shootings’ e�ects work. Perhaps

shootings have spillover e�ects—with any e�ects showing up in adjacent counties—or e�ects of

shootings arise as a function of the distance to where a shooting occurs, the time since a shooting

occurred, or the intensity of the shooting itself (e.g., the number of deaths/injuries in a shooting).

Alternatively, perhaps mass shootings have e�ects that show up at a national level. The best evidence we
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

have currently suggests that none of these things occur in the mass shootings contexts (HHB 2020).46

However, in their analyses, scholars should not forget there are often multiple ways of conceptualizing

treatment exposure.

Second, we have shown the importance of including unit-specific time trends to ensure that the

parallel-trends assumption is not violated. However, it is possible that other trends may bias the e�ect

of interest. For example, nationwide trends in time-varying covariates may drive results.47 Including

these might change results. For example, using GMAL data, if we include the covariates they do

(population, proportion non-white, and change in the unemployment rate), the e�ect estimate for a

model with county-specific time trends is 0.7 percentage points (p<0.133; 95% CI: [-0.2, 1.6]).48

However, adding these controls’ linear interaction with time, the e�ect estimate is even smaller—being

only 0.2 percentage points—with less evidence for a meaningful e�ect (p<0.597; 95% CI: [-0.7, 1.2]).

This may be a useful check for scholars of di�erence-in-di�erences designs to include.

Third, in some instances it may be useful to unpack the treatment e�ects at a more granular level—

estimating, for example, the e�ect of individual shootings, rather than the average e�ect. Scholars

have developed the synthetic control method for such instances (Abadie et al. 2015; Kreif et al. 2016;

Porreca 2022; Arkhangelsky et al. 2021) providing a systematic way to choose counterfactual units

when individual treated units are of interest. Similarly, if one is interested in whether a small set of

observations drives results, Broderick et al. (2020) have developed an e�ective and computationally

feasible procedure49 package in R..

Fourth, scholars may be interested in estimating distributional e�ects which has advanced rapidly

in recent years. Recent work has combined di�erence-in-di�erences estimators with those produced

46Only HHB considers these di�erent types of coding treatment. They find null e�ects with all of these treatments

once time trends are accounted for.
47More generally, when including covariates it is important that the controls one uses do not include those that

are a�ected by treatment. Otherwise, these would be “bad controls” (Montgomery et al. 2018). This does not

appear to be the case in the mass shootings context; after all, only GMAL use (a few) controls (i.e. population,

proportion nonwhite, and change in unemployment rate) and these do not influence their substantive results. But

researchers should keep this fact in mind when choosing controls.
48From the models with quadratic county-specific time trends.
49See their zaminfluence
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from quantile regression (see Roth et al. 2022; Callaway and Li 2019). Using this test, HHB show

little signs of shifts at any point along the distribution of Democratic vote shares; that is, there is

little evidence for shootings sparking polarization of electoral outcomes (see their Figure A12 and

surrounding discussion).

Finally, in making modeling decisions in the di�erence-in-di�erences space, one needs to acknowledge

that there may be tradeo�s between bias and precision. For example, using higher order polynomials

for unit specific time trends requires more power and may inflate standard errors. For this reason,

in our applied example, we have taken great care to pay attention to both e�ect sizes and statistical

significance, and the range of potential e�ects. Recent work has shown the importance of considering

power in testing for pre-trends (Roth 2022; Freyaldenhoven et al. 2019; Roth et al. 2022).

In sum, we note that, to a certain extent, how to implement di�erence-in-di�erences designs depends

on the nature of the data —that is, whether or not there are likely violations of the parallel-trends

assumption and/or unaccounted treatment e�ect heterogeneity. In examining the e�ect of gun violence

on electoral outcomes, the former appears to be the key issue to identification while the latter is less of

an issue. However, this may not always be the case. As such, we think it best for authors to follow the

suggestions we outline above to ensure their inferences are not misleading. In our applied example,

doing so reconciles why di�erent studies using the same data have come to vastly di�erent conclusions

about the e�ects of gun violence on electoral vote shares.

9. SYNTHESIZING THE EVIDENCE FROM MULTIPLE
DIFFERENCE-IN-DIFFERENCES SPECIFICATIONS

Before concluding, we believe it important to discuss how researchers should interpret their results

when there are many di�erent model specifications, as with di�erence-in-di�erences designs. A full

discussion of synthesizing multiple model results is beyond the scope of this paper. However, we note

briefly here a few important points required to come to a conclusion about the e�ects of mass shootings

on election outcomes.

In our particular example, there are a multitude of plausible models that might be run, a small number

of which show statistically significant e�ects (both positive and negative). Given the potential for bias

and the role that researcher degrees of freedom play (even unintentionally), we think it important for
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Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

researchers to 1.) address the potential threats to inference we outline above, 2.) be transparent about

the role that simple changes to model specification play, and 3.) take a “preponderance of evidence”

rather than a “singular model” approach.

It is essential that researchers running di�erence-in-di�erences model specifications do not cherry-

pick individual model specifications, but rather test for robustness across the dimensions discussed

above. Increasing the number of specifications run makes it potentially easier to choose one model for

incorrect reasons (e.g. choosing a specification just because it achieves statistical significance or being

led by unintentional internal biases to justify a preferred model).50

What does this mean in the mass shootings context? Though on occasion we see intermittent

statistically significant e�ects, these e�ects are 1.) much smaller than previous research has suggested

and 2.) not robust to reasonable changes to these specifications under the control of researchers. Taking

a singular model approach, we become vulnerable to the curse of researcher degrees of freedom and

mistakenly conclude that mass shootings have an e�ect (either positive or negative). However, with a

preponderance of evidence approach, we find strong reasons to doubt mass shootings have significant,

systematic, or large e�ects on Democratic vote shares.51 Models that account for violations of parallel

trends provide little to no evidence mass shootings cause large and meaningful electoral change in the

United States and fairly compelling evidence that is consistent with a null e�ect.

This can be seen by synthesizing four pieces of evidence. First, though some corrected models show

a much smaller, but perhaps very modest, positive e�ect on Democratic vote share, most of these

estimates are not statistically significant. Second, negative e�ects show up fairly often across the small,

but reasonable, changes to model specification well within the control of researchers and their many

50In comparing the various approaches outlined above, it may be useful to leverage new programming tools that

make it easier to estimate multiple approaches at once. For one example, we point to the 2021 GitHub repository

of Florian M. Hollenbach found here.
51Arguing that scholars should be running model specifications may prompt issues with multiple comparisons. We

believe that scholars should be careful to not over-interpret singularly significant e�ects in a deluge of otherwise

not significant results. However, properly adjusting for multiple comparisons across similar robustness checks is

not well-developed. And we note here, in arguing more for the null, it is more conservative for us to not make

any adjustments for multiple comparisons.
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degrees of freedom. We can see this visually in Figure 11 which plots the distribution of e�ects and

p-values for all of the di�erence-in-di�erences models and event-study models that we estimate above.

As can be seen in the left top panel, all of the coe�cients from models with trends are much smaller

than those provided by GMAL’s TWFE. Some are positive and some are negative; but the distribution

spikes near zero. The average e�ect in the di�erence-in-di�erences model is 0.9 percentage points.

As can be seen in the bottom left panel, in the event study models there is also a spike at zero, with

a similar amount of positive and negative e�ects. The average e�ect for all post-treatment periods

0-4 across all event-study models is 0.4 percentage points and the average across all models in the

year immediately after treatment (i.e. period 0) is 0.07 percentage points. Third, when significant and

positive e�ects do show up these e�ects are often not robust to slight variations in model specification

that are within the degrees of freedom researchers face. Fourth, sensitivity analyses that embrace

the uncertainty around exact departures from parallel trends show that the results are highly sensitive

to even minimal reasonable departures from parallel trends. Hence, the preponderance of evidence

suggests that a large e�ect is implausible and modest positive e�ects are anything but sure.

10. CONCLUSION

In reconciling research on the e�ects of mass shootings on electoral outcomes, our work has also

highlighted the considerations we argue should become standard practice given the potential hazards of

navigating di�erence-in-di�erence designs. In addition to resolving an important question, we hope

our article will spark a more nuanced approach to estimating di�erence-in-di�erences models—one

more closely aligned with the methodological treatment of this oft-used promising research design. If

appropriately used, the checks we have outlined above will help researchers make better inferences

using this commonly used identification strategy.

In this regard, our work does have some limitations. The methodological contribution we provide

most readily applies to cases where the treatment one desires to estimate may not be fully exogenous,

the treatment one desires to estimate is an event that may vary in timing across units, and there are

a comparatively larger sample size with more cross-sections than time points. Instances that depart

from these may leverage similar approaches that we outlined above, but may also have unique features.

Moreover, we have not explored some aspects of panel data estimation that are more recently developed
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FIGURE 11. Distribution of All E�ect Estimates and P-Values for Models with County Trends
(a) Distribution of Coe�cients in Di�-in-Di�s Mod-
els with County Trends
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(b) Distribution of P-Values in Di�-in-Di�s with
County Trends
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(c) Distribution of Coe�cients in Event-Study Mod-
els with County Trends
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(d) Distribution of P-Values in Event-Study Models
with County Trends
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Distribution of all model estimates with trends in Figure 5 above in the first row and then for all the event study estimates in
the paper on the bottom row. The event study coe�cients are shown for periods 0-4 post treatment. The left panel in each
row shows coe�cients (in percentage point units). The right panel in each row shows the distribution of p-values across
model specifications. Takeaway: Once we account for potential violationsof parallel trends, the e�ects of shootings spike
at zero, are only rarely significant, are not robust to slight changes in model specification, and sometimes positive and
sometimes negative.

for scenarios with very few treatment units (e.g. synthetic controls) that are valuable, but beyond the

scope of what we do here. Finally, our work is applied to a context where there is not currently, nor

any prospect of a future, experimental baseline. While the econometric literature we draw from has a

long history of highlighting the value of the checks we run—by using proofs, simulations, and other

validation techniques—there has yet to be (to our knowledge) a comparison of the di�-in-di�s tools

in our arsenal to a randomized baseline. Future work would do well to find other contexts where
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randomization is possible and add this benchmarking task to our suite of studies on this widely used

method, as has been done with other methodological techniques (e.g., Arceneaux et al. 2006; Green

et al. 2009).

Returning to the context of this study, America’s legacy of gun violence is heartbreaking and the

thousands of deaths that occur from guns each year constitute a policy failure of epic proportions.

Yet, whether policymakers relative inaction occurs in spite of (or as a result of a lack of) an electoral

response has been an area of disagreement in previous work. While agreeing that mass shootings do

not e�ect voter turnout, scholars have come to vastly di�erent conclusions about the e�ect of mass

shootings on vote shares. In this paper, we show that gun violence has little to no impact on vote shares

and that the previous work that has shown a relationship failed to navigate the many pitfalls that come

with di�erence-in-di�erences designs.

Taken together, these checks show we cannot support the hypothesis that suggest that mass shootings

(or school shootings or ‘rampage-style’ school shootings) increase Democratic vote shares substantially.

Moreover, even the most generous interpretation—i.e. one that ignores statistical uncertainty around the

estimates altogether (something that we think is neither wise or nor prudent)—suggests that shootings

have, if anything, a very modest e�ect on Democratic vote share—one that is much smaller than

suggested by prior research. When looking across all robustness checks, we cannot conclude that mass

shootings—be they in schools or not, or rampage-style or not—substantially a�ect election outcomes.

Such a conclusion comes from results that are not robust and that are highly sensitive.

Furthermore, we also note that these estimates are all local to the county in which the shooting

occurred. Though the presence of any mass shootings is, in our view, repugnant, mass shootings are

(thankfully) a relatively rare phenomena. Given that shootings only occurred in 0.4% of counties

(116 total; 11.6 per election in the sample) in the HHB dataset, 0.4% of counties (115 total; 11.5 per

election in the sample) in the GMAL dataset, and only 0.5% (72 total; 14.4 per election in the sample)

of counties in the Yousaf data further emphasizes the limited impact shootings have had on elections.52

Putting these two pieces together—both the modest e�ect sizes in percentage points and their limited

scope—suggests e�ects of mass shootings are of little substantive consequence for election outcomes.

52Only HHB consider whether there are spillover e�ects on adjacent counties, and find none (p. 1377).

42

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate



Pitfalls in Di�erence-in-Di�erences Designs: Shootings and Elections

Even if we take the point estimates above at face value and ignore statistical uncertainty (something we

think we should not do), a county-specific e�ect of the size we observe and the infrequency at which

they happen would have virtually no e�ect on any statewide or national election.

Scholars doing work on the localized electoral e�ects of plausibly exogenous events or shocks should

not forget there are often multiple ways of conceptualizing treatment exposure. These include, but

are not limited to, treatments that conceptualize treatment as being short-lived (i.e. constrained only

to the period when they happen) or longer-term (i.e. turned on in all periods after treatment occurs),

treatments that consider spillover e�ects on units adjacent to treatment, treatments that consider the

dosage or intensity of treatment, and treatments that consider the possibility of national treatments

drowning out any potential local e�ects. The best evidence we have currently suggests that none of

these things occur in the mass shootings contexts (see Hassell et al. (2020, p. 1377) for more details).

Our work sets the table for future work on the political economy of gun violence and retrospective

voting/accountability more generally.53 The lingering question is why mass shootings fail to substantively

change the electoral incentives elected o�cials face. Despite having favorable conditions for a response,

little to no detectable retrospective voting occurs as a result of mass shootings. This result illuminates a

need for a broader research agenda that better explores the nature of retrospective voting (or lack thereof).

Our paper provides important context by showing that some of the most common characteristics thought

to promote active retrospective voting (e.g. voter attention, media coverage, potential for governmental

action) are not always su�cient to spark electoral change, providing answers to important discrepancies

in previous work on the e�ect of mass shootings on electoral outcomes and a guide for researchers

attempting to navigate the potential pitfalls of di�erence-in-di�erence designs.

53Future research should consider why mass shootings fail to mobilize new voters nor change the voting patterns

of existing voters.
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Table S1: Di↵erences in All Studies on the E↵ects of Gun Violence on Electoral Vote Shares

GMAL Yousaf HHB

Data Shootings “Rampage-style” school shootings:
“Rampage-style” shootings are shoot-
ings that “take place on a school-related
public stage before an audience; involve
multiple victims, some of whom are shot
simply for their symbolic significance or at
random; involve one or more shooters who
are students or former students of the school
and where the motivation of the shooting
[does not] correlate with gang violence or
targeted militant or terroristic activity”
(GLAM, 1)

Mass Shootings: Mass shootings are all
shootings “leading to four or more deaths at
one location” (Yousaf, 2770)

All school shootings (HHB, 1377)

Years 1980 to 2016 2000 to 2016 2000 to 2018

Vote Outcomes Presidential election returns only Presidential, gubernatorial, senatorial, and
congressional election returns from presiden-
tial election years only

Presidential, congressional, state, and local
election returns in all years

Methods Model Specifica-
tions

Di↵erence-in-Di↵erences TWFE (No county

specific time-trends included)

Di↵erence-in-Di↵erences TWFE (No county

specific time-trends included)

Di↵erence-in-Di↵erences TWFE with county
specific time-trends

Standard Errors Clustered at the state level Clustered at the state level Clustered at the county (treatment) level
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Figure S1: Results Alternate Baseline Periods in Event Study Design that Accounts for County
Specific Time Trends

(a) LINEAR -2 Period Benchmark
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(b) QUADRATIC -2 Period Benchmark
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Figure shows the results from using other pre-treatment periods as the baseline as suggested by Freyaldenhoven et

al. (2021). Takeaway: Benchmarked to pre-treatment trends at t-2, the estimates are even smaller, and even less

suggestive of mass shootings having an e↵ect on electoral outcomes.
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Figure S2: Results Alternate Baseline Periods in Event Study Design that Accounts for County
Specific Time Trends (cont’d)

(a) LINEAR -3 Period Benchmark
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(b) QUADRATIC -3 Period Benchmark
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Figure shows the results from using other pre-treatment periods as the baseline as suggested by Freyaldenhoven et

al. (2021). Takeaway: Benchmarked to pre-treatment trends at t-3, the estimates are even smaller, and even less

suggestive of mass shootings having an e↵ect on electoral outcomes.
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Figure S3: Results Alternate Baseline Periods in Event Study Design that Accounts for County
Specific Time Trends (cont’d)

(a) LINEAR -4 Period Benchmark
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(b) QUADRATIC -4 Period Benchmark
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Figure shows the results from using other pre-treatment periods as the baseline as suggested by Freyaldenhoven et

al. (2021).Takeaway: Benchmarked to pre-treatment trends at t-4, the estimates are even smaller, and even less

suggestive of mass shootings having an e↵ect on electoral outcomes.
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Figure S4: Results Alternate Baseline Periods in Event Study Design that Accounts for County
Specific Time Trends (cont’d)

(a) LINEAR -5 Period Benchmark
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(b) QUADRATIC -5 Period Benchmark
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Figure shows the results from using other pre-treatment periods as the baseline as suggested by Freyaldenhoven et

al. (2021).Takeaway: Benchmarked to pre-treatment trends at t-5, the estimates are even smaller, and even less

suggestive of mass shootings having an e↵ect on electoral outcomes.
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Figure S5: Interactive Fixed E↵ects Counterfactual Estimator

(a) Interactive Fixed E↵ects, r=2,

degree=3
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(b) Interactive Fixed E↵ects, r=3,

degree=3
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(c) Interactive Fixed E↵ects, r=1,

degree=3
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Figure shows the results from using Interactive Fixed E↵ects Counterfactual Estimator developed by Liu et al.

(2021) with di↵erent values of r—the number of factors used in estimation—and the integer specifying the order of

the polynomial trend term. Takeaway: In the interactive fixed e↵ects models, there is no evidence of the substantial

e↵ects shown in more simplistic model specifications that do not account for potential violations of the parallel-trends

assumption.

Figure S6: Interactive Fixed E↵ects Counterfactual Estimator (2)

(a) Interactive Fixed E↵ects, r=2,

degree=2
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(b) Interactive Fixed E↵ects, r=3,

degree=2
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(c) Interactive Fixed E↵ects, r=1,

degree=2
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Figure shows the results from using Interactive Fixed E↵ects Counterfactual Estimator developed by Liu et al.

(2021) with di↵erent values of r—the number of factors used in estimation—and the integer specifying the order of

the polynomial trend term. Takeaway: In the interactive fixed e↵ects models, there is no evidence of the substantial

e↵ects shown in more simplistic model specifications that do not account for potential violations of the parallel-trends

assumption.
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Figure S7: Interactive Fixed E↵ects Counterfactual Estimator (3)

(a) Interactive Fixed E↵ects, r=2,

degree=4
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(b) Interactive Fixed E↵ects, r=3,

degree=4
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(c) Interactive Fixed E↵ects, r=1,

degree=4
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Figure shows the results from using Interactive Fixed E↵ects Counterfactual Estimator developed by Liu et al.

(2021) with di↵erent values of r—the number of factors used in estimation—and the integer specifying the order of

the polynomial trend term. Takeaway: In the interactive fixed e↵ects models, there is no evidence of the substantial

e↵ects shown in more simplistic model specifications that do not account for potential violations of the parallel-trends

assumption.
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Figure S8: Pre-Treatment E↵ects with Alternate County-Specific Trend Types

(a) Cubic County Trends
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(b) Quartic County Trends
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Figure shows the results from using higher order polynomial functional forms for the county-specific trends. The

cubic trends model omits the 28 year lag because there are not enough observations in the GMAL data to estimate a

model with this many high dimensional fixed e↵ects. The quartic trends model omits the 24 and 28 year lag for the

same reason. Takeaway: In contrast to the TWFE estimates shown in panels (a) and (b) in Figure 3 in the text

(but consistent with specifications with linear and quadratic time trends), specifications with cubic and quadratic

time trends show balance prior to when the shooting occurred.
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Figure S9: The E↵ect of Mass Shootings on Presidential Election Returns Once County-Specific
Trends are Absorbed, Alternate Polynomial Orders

(a) Cubic County Trends Added (b) Quartic County Trends Added

(c) Cubic County Trends Added, Change in DV (d) Quartic County Trends Added, Change in DV

Figure shows the e↵ect of mass shootings of various types once we account for di↵erential trends in Democratic

vote share across counties in the United States—this time with cubic and quartic county-specific trends. Within

each panel, the first 3 estimates are using the GMAL coding of mass shootings and their data, the next comes from

HHB, and the last comes from Yousaf. The upper left panel shows specifications with cubic county trends, the

upper right panel shows specifications with quartic county trends, the bottom left panel shows specifications with

cubic county trends and using a change in Democratic vote share over the prior 4-year-previous election, the bottom

right panel shows specifications with quartic county trends and using a change in Democratic vote share over the

prior 4-year-previous election. In the last panel, the standard error will not estimate for the Yousafdata as there are

not observations in this shorter time series to do so. Coe�cients, standard errors, and p-values are labeled for each

coe�cient. Takeaway: Once we account for di↵erential trends across counties, the e↵ects of mass shootings—be

they located on school grounds or not, or be they rampage style or not—are all small and precisely-estimated.
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Figure S10: Pre-Treatment E↵ects on Turnout

(a) TWFE

−0.04

0.00

0.04

4 8 12 16 20 24 28
Years Before the Shooting Actually OccurredEf

fe
ct

 o
n 

D
em

oc
ra

tic
 V

ot
e 

Sh
ar

e 
in

 L
ag

 P
er

io
d

All mass shootings Rampage school shootings Rampage school shootings w Fatalities Rampage school shootings w No Fatalities

(b) Linear County Trends
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(c) Quadratic County Trends
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Figure shows the e↵ect of mass shootings on voter turnout in the years prior to when a shooting occurred. Takeaway:

In contrast to the e↵ects of mass shootings on Democratic vote share which is plagued by trend di↵erences pre-

treatment, turnout does not appear to su↵er from the same problem, as there is balance pre-treatment.13



Figure S11: Trends in Presidential Vote Share in Counties With Mass Shootings Prior to These
Shootings Occurring, Compared to Trends in Counties Without a Shooting (YOUSAF AND HHB
DATA)

(a) Pre-treatment Trends in Democratic vote share

in Shooting Counties (HHB)
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(b) Trends in Democratic vote share in Non

Shooting Counties (HHB)
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(c) Pre-treatment Trends in Democratic vote share

in Shooting Counties (Yousaf)
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(d) Trends in Democratic vote share in Non

Shooting Counties (Yousaf)
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Pre-treatment trends of Democratic vote share in counties where a shooting occurred and benchmarks this to the

trends in Democratic vote share found in counties where a shooting did not occur for the Yousaf and HHB data. In

the panels on the left, the small blue lines mark the patterns for all counties with a shooting and the bolded blue

lines capture the average trend across these counties. The panels on the right show the same pattern for counties

without a shooting. The small red lines mark the patterns for all counties without a shooting and the bolded red

lines shows a loess model for counties without a shooting. Takeaway: Though taking a slightly di↵erent shape

that the GMAL data, both the HHB and YOUSAF datasets show a separation between pre-treatment counties and

control counties.
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Figure S12: Treatment Across Counties Over Time, Only County Years with a Shooting are Treated

(a) GMAL Treatment Panel for Random

Sample
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Treatment over time for a random sample of counties in the three datasets illustrating treatment approach 1. Separate random counties are used in

the figure that follows this one.
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Figure S13: Treatment Across Counties Over Time, All Post Shooting Counties are Treated

(a) GMAL Treatment Panel for Random

Sample

1980 1984 1988 1992 1996 2000 2004 2008 2012 2016

Year

C
ou

nt
y

Under Control Under Treatment Missing

Treatment Status

(b) HHB Treatment Panel for Random

Sample

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Year

C
ou

nt
y

Under Control Under Treatment Missing

Treatment Status

(c) Yousaf Treatment Panel for Random

Sample

2000 2004 2008 2012 2016

Year

C
ou

nt
y

Under Control Under Treatment Missing

Treatment Status

Treatment over time for a random sample of counties in the three datasets illustrating treatment approach 2. Separate random counties are used in

the figure that precedes this one.
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Figure S14: The E↵ect of Mass Shootings on Presidential Election Returns Once County-Specific
Trends are Absorbed, All Post Shooting Counties are Treated

(a) Linear County Trends Added (b) Quadratic County Trends Added

(c) Linear County Trends Added, Change in DV (d) Quadratic County Trends Added, Change in DV

sd

E↵ect of mass shootings of various types once we account for di↵erential trends in Democratic vote share across

counties in the United States. Within each panel, the first 3 estimates are using the GMAL coding of mass shootings

and their data, the next comes from HHB, and the last comes from Yousaf. The upper left panel shows specifications

with linear county trends, the upper right panel shows specifications with quadratic county trends, the bottom

left panel shows specifications with linear county trends and using a change in Democratic vote share over the

prior 4-year-previous election, the bottom right panel shows specifications with quadratic county trends and using a

change in Democratic vote share over the prior 4-year-previous election. Coe�cients, standard errors, and p-values

are labeled for each coe�cient. Takeaway: Once we account for di↵erential trends across counties, the e↵ects

of mass shootings—be they located on school grounds or not, or be they rampage style or not—are all small and

precisely-estimated.
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Table S2: The ATT for each period, across all groups or cohorts (GMAL)

stats Average T1984 T1988 T1992 T1996 T2000 T2004 T2008 T2012 T2016
b .0518245 .0619944 .0245811 .0246506 .0364387 .053292 .0565589 .0617882 .0599066 .0872101
se .0096223 .0136641 .011968 .01148 .0120084 .0125972 .013094 .0141372 .0135578 .0118054
z 5.385884 4.537023 2.053896 2.147266 3.034426 4.230466 4.319438 4.370606 4.418599 7.387303
pvalue 7.21e-08 5.71e-06 .0399858 .0317721 .0024099 .0000233 .0000156 .0000124 9.93e-06 1.50e-13
ll .0329652 .0352133 .0011242 .0021502 .0129026 .028602 .030895 .0340798 .0333337 .064072
ul .0706839 .0887756 .0480381 .0471509 .0599748 .0779821 .0822227 .0894967 .0864794 .1103483

Estimates of the ATT for each period, across all groups or cohorts (i.e. the “Calendar” estimates provided in the CSdid
package) based on the procedure developed by Callaway and Sant’Anna (2021). Estimates use the doubly Robust IPW (DRIPW)
estimation method, with Wildbootstrap SE, and not-yet treated observations as controls. Takeaway: At present, this method
does not allow for the inclusion of unit-present trends, so estimates for this empirical case should be viewed with caution. These
are included as an illustration of how to use this method in practice.

Table S3: The ATT for each group or cohort, across all periods (GMAL)

stats Average G1984 G1988 G1992 G1996 G2000 G2004 G2008 G2012 G2016
b .053623 .1587951 .0391324 .0485951 .0563038 .0283724 .0285435 .0474233 .0469285 .0565588
se .0068437 .0189939 .0201407 .0162478 .0424463 .0300613 .0270402 .0116037 .006478 .0069854
z 7.835439 8.360334 1.942957 2.990872 1.326472 .9438179 1.055595 4.086901 7.244247 8.096711
pvalue 4.67e-15 6.25e-17 .0520213 .0027818 .1846836 .3452627 .2911533 .0000437 4.35e-13 5.65e-16
ll .0402097 .1215678 -.0003425 .01675 -.0268894 -.0305467 -.0244543 .0246804 .0342318 .0428676
ul .0670363 .1960224 .0786074 .0804402 .139497 .0872915 .0815413 .0701663 .0596252 .0702499

Estimates of the ATT for each group or cohort, across all periods (i.e. the “Group” estimates provided in the CSdid package)
based on the procedure developed by Callaway and Sant’Anna (2021). Estimates use the doubly Robust IPW (DRIPW)
estimation method, with Wildbootstrap SE, and not-yet treated observations as controls. Takeaway: At present, this method
does not allow for the inclusion of unit-present trends, so estimates for this empirical case should be viewed with caution. These
are included as an illustration of how to use this method in practice.
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Figure S15: Estimation of all Dynamic E↵ects (GMAL)
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Estimates of the dynamic e↵ects (i.e. the “Event” estimates provided in the CSdid package) based on the procedure

developed by Callaway and Sant’Anna (2021). Estimates use the doubly Robust IPW (DRIPW) estimation method,

with Wildbootstrap SE, and not-yet treated observations as controls. Takeaway: Pre-treatment imbalances can be

seen in the figure. This suggests that even when one uses “clean comparions” as suggested by Callaway and Sant’Anna

(2021), di↵erential pre-treatment trends are an issue. At present, this method does not allow for the inclusion of

unit-present trends, so estimates for this empirical case should be viewed with caution. These are included as an

illustration of how to use this method in practice. We reference the reader to the event study estimates in the paper

for those that adjust for di↵erential trends identified in the paper
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Table S4: The ATT for each period, across all groups or cohorts (HHB)

stats Average T2002 T2004 T2006 T2008 T2010 T2012 T2014 T2016 T2018
b .032836 .051527 .0243792 -.0458838 .0395123 .0239998 .0489557 .0240271 .0796322 .0493749
se .0229896 .0362721 .0228559 .0475194 .0432784 .0368888 .0285933 .0246188 .0207751 .0173127
z 1.4283 1.420568 1.066648 -.9655811 .9129784 .650598 1.712138 .9759645 3.833059 2.851938
pvalue .1532057 .1554425 .2861309 .3342539 .3612539 .515306 .0868712 .3290821 .0001266 .0043454
ll -.0122227 -.0195651 -.0204175 -.1390202 -.0453119 -.0483009 -.0070862 -.0242249 .0389137 .0154425
ul .0778948 .1226191 .0691759 .0472525 .1243364 .0963005 .1049976 .072279 .1203506 .0833072

Estimates of the ATT for each period, across all groups or cohorts (i.e. the “Calendar” estimates provided in the CSdid
package) based on the procedure developed by Callaway and Sant’Anna (2021). Estimates use the doubly Robust IPW (DRIPW)
estimation method, with Wildbootstrap SE, and not-yet treated observations as controls. Takeaway: At present, this method
does not allow for the inclusion of unit-present trends, so estimates for this empirical case should be viewed with caution. These
are included as an illustration of how to use this method in practice.

Table S5: The ATT for each group or cohort, across all periods (HHB)

states Average G2002 G2004 G2006 G2008 G2010 G2012 G2014 G2016 G2018
b .0323525 .0222296 .056052 -.0032929 .1754662 .137212 .0905926 .010359 .000745 .0107809
se .0142005 .0621462 .0256692 .0714713 .0603517 .0051282 .0259543 .0148958 .0178077 .0251306
z 2.278258 .3576986 2.183627 -.0460732 2.907397 26.75635 3.490473 .6954327 .0418356 .4289939
pvalue .0227112 .7205689 .0289897 .9632519 .0036445 1.0e-157 .0004822 .4867841 .9666297 .6679277
ll .0045199 -.0995748 .0057412 -.1433741 .0571791 .1271609 .0397232 -.0188362 -.0341574 -.0384742
ul .060185 .144034 .1063627 .1367882 .2937533 .1472631 .141462 .0395542 .0356474 .0600359

Estimates of the ATT for each group or cohort, across all periods (i.e. the “Group” estimates provided in the CSdid package)
based on the procedure developed by Callaway and Sant’Anna (2021). Estimates use the doubly Robust IPW (DRIPW)
estimation method, with Wildbootstrap SE, and not-yet treated observations as controls. Takeaway: At present, this method
does not allow for the inclusion of unit-present trends, so estimates for this empirical case should be viewed with caution. These
are included as an illustration of how to use this method in practice.
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Figure S16: Estimation of all Dynamic E↵ects (HHB)

-.2
-.1

0
.1

.2
.3

AT
T

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
Years to Treatment

Pre-treatment Post-treatment

Estimates of the dynamic e↵ects (i.e. the “Event” estimates provided in the CSdid package) based on the procedure

developed by Callaway and Sant’Anna (2021). Estimates use the doubly Robust IPW (DRIPW) estimation method,

with Wildbootstrap SE, and not-yet treated observations as controls. Takeaway: Pretreatment imblances are of

least concern in the HHB data, and this is where we observe no evidence for a significant e↵ect. At present, this

method does not allow for the inclusion of unit-present trends, so estimates for this empirical case should be viewed

with caution. These are included as an illustration of how to use this method in practice. We reference the reader

to the event study estimates in the paper for those that adjust for di↵erential trends identified in the paper
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Table S6: The ATT for each period, across all groups or cohorts (Yousaf)

stats Average T2004 T2008 T2012 T2016
b .0387695 .015784 .0336756 .035597 .0700214
se .0088303 .0117028 .0116784 .0173425 .0095523
z 4.390519 1.348739 2.88359 2.052591 7.330298
pvalue .0000113 .1774209 .0039317 .0401123 2.30e-13
ll .0214625 -.007153 .0107865 .0016064 .0512992
ul .0560765 .0387209 .0565648 .0695876 .0887436

Estimates of the ATT for each period, across all groups or cohorts (i.e. the “Calendar” estimates
provided in the CSdid package) based on the procedure developed by Callaway and Sant’Anna
(2021). Estimates use the doubly Robust IPW (DRIPW) estimation method, with Wildbootstrap
SE, and not-yet treated observations as controls. Takeaway: At present, this method does not
allow for the inclusion of unit-present trends, so estimates for this empirical case should be viewed
with caution. These are included as an illustration of how to use this method in practice.

Table S7: The ATT for each group or cohort, across all periods (Yousaf)

stats Average G2004 G2008 G2012 G2016
b .0496422 .0476684 .0615136 .0460837 .0477795
se .0071074 .0205126 .0151624 .0098212 .0115534
z 6.984585 2.323858 4.056979 4.692281 4.135519
pvalue 2.86e-12 .0201331 .0000497 2.70e-06 .0000354
ll .035712 .0074644 .0317958 .0268345 .0251351
ul .0635725 .0878725 .0912314 .0653328 .0704238

Estimates of the ATT for each group or cohort, across all periods (i.e. the “Group” estimates
provided in the CSdid package) based on the procedure developed by Callaway and Sant’Anna
(2021). Estimates use the doubly Robust IPW (DRIPW) estimation method, with Wildbootstrap
SE, and not-yet treated observations as controls. Takeaway: At present, this method does not
allow for the inclusion of unit-present trends, so estimates for this empirical case should be viewed
with caution. These are included as an illustration of how to use this method in practice.
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Figure S17: Estimation of all Dynamic E↵ects (Yousaf)
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Estimates of the dynamic e↵ects (i.e. the “Event” estimates provided in the CSdid package) based on the procedure

developed by Callaway and Sant’Anna (2021). Estimates use the doubly Robust IPW (DRIPW) estimation method,

with Wildbootstrap SE, and not-yet treated observations as controls. Takeaway: Pre-treatment imbalances can be

seen in the figure. This suggests that even when one uses “clean comparions” as suggested by Callaway and Sant’Anna

(2021), di↵erential pre-treatment trends are an issue. At present, this method does not allow for the inclusion of

unit-present trends, so estimates for this empirical case should be viewed with caution. These are included as an

illustration of how to use this method in practice. We reference the reader to the event study estimates in the paper

for those that adjust for di↵erential trends identified in the paper

23



Figure S18: Sun and Abraham (2020) Event Study Estimates (GMAL)
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(b) Linear Trends
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(c) Quadratic Trends
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Sun and Abraham (2020) event study estimates through the eventstudyinteract package provided by the authors. Standard errors are clustered

at the county level. Takeaway: Clean comparison e↵ects with trends show no sign of a sizable and durable e↵ect on Democratic vote shares shown

in the TWFE nor in the simple event study plot
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Figure S19: Sun and Abraham (2020) Event Study Estimates (HHB)
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Sun and Abraham (2020) event study estimates through the eventstudyinteract package provided by the authors. Standard errors are clustered

at the county level. Takeaway: Clean comparison e↵ects with trends show no sign of a sizable and durable e↵ect on Democratic vote shares shown

in the TWFE nor in the simple event study plot
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Figure S20: Sun and Abraham (2020) Event Study Estimates (Yousaf)
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Sun and Abraham (2020) event study estimates through the eventstudyinteract package provided by the authors. Standard errors are clustered

at the county level. Takeaway: Clean comparison e↵ects with trends show no robust sign of a sizable and durable e↵ect on Democratic vote shares

shown in the TWFE nor in the simple event study plot. The trends specification for this approach in the Yousaf data still show signs of pre-treatment

imbalance and, as such, should be interpreted with care.
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Figure S21: Estimation of Clean Comparison TWFE E↵ects using the Callaway and Sant’Anna
(2021) Approach
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Estimates of the dynamic e↵ects (i.e. the “Event” estimates provided in the CSdid package) based on the procedure

developed by Callaway and Sant’Anna (2021). Estimates use the doubly Robust IPW (DRIPW) estimation method,

with Wildbootstrap SE, and not-yet treated observations as controls. Controls used by GMAL are included—i.e.

population, proportion non-white, and change in the unemployment rate. Takeaway: Pre-treatment imbalances

can still be seen in the figure. This suggests that even when one uses “clean comparions” as suggested by Callaway

and Sant’Anna (2021) and covariates, di↵erential pre-treatment trends are an issue. At present, this method does

not allow for the inclusion of unit-present trends, so estimates for this empirical case should be viewed with caution.

These are included as an illustration of how to use this method in practice. We reference the reader to the event

study estimates in the paper for those that adjust for di↵erential trends identified in the paper.
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Table S8: Estimation of Clean Comparison TWFE E↵ects using the de Chaisemartin and
D’Haultfoeuille Approach – HHB

Estimate SE LB CI UB CI N Switchers
E↵ect 0 0.0124381 0.0186208 -0.0240587 0.048935 26791 91
E↵ect 1 0.0180224 0.0268722 -0.0346472 0.0706919 23526 71
E↵ect 2 0.0051758 0.0350417 -0.063506 0.0738576 20319 61
E↵ect 3 0.0493664 0.0762519 -0.1000873 0.1988201 17146 34
E↵ect 4 0.0116177 0.1171154 -0.2179286 0.2411639 14088 26
Placebo 1 0.016137 0.0113333 -0.0060763 0.0383503 23540 85
Placebo 2 -0.0214889 0.0152387 -0.0513567 0.0083788 20341 83
Placebo 3 0.0211926 0.0126292 -0.0035607 0.0459458 17184 72
Placebo 4 -0.0103004 0.0117131 -0.0332582 0.0126574 14126 64

Note: de Chaisemartin and D’Haultfoeuille (2020) approach for assessing and addressing imple-
mented in the did multiplegt package in STATA and DIDmultiplegt package in R. Under
the common trends assumption, beta estimates a weighted sum of 395 ATTs. 379 ATTs receive
a positive weight, and 16 receive a negative weight. The sum of the positive weights is equal to
1.0010116. The sum of the negative weights is equal to -.00101162. beta is compatible with a DGP
where the average of those ATTs is equal to 0, while their standard deviation is equal to .12133344.
beta is compatible with a DGP where those ATTs all are of a di↵erent sign than beta, while their
standard deviation is equal to 13.249181. Takeaway: After using this method, we see no evidence
of substantial or significant e↵ects of mass shootings on electoral outcomes.

Table S9: Estimation of Clean Comparison TWFE E↵ects using the de Chaisemartin and
D’Haultfoeuille Approach – GMAL

Estimate SE LB CI UB CI N Switchers
E↵ect 0 0.0170459 0.004788 0.0076614 0.0264304 27632 98
E↵ect 1 0.0159759 0.0101364 -0.0038914 0.0358431 24507 72
E↵ect 2 0.0227205 0.0188645 -0.0142539 0.0596949 21409 59
E↵ect 3 0.0359566 0.0292597 -0.0213925 0.0933056 18315 47
E↵ect 4 0.0797536 0.0415763 -0.0017359 0.1612432 15231 38
Placebo 1 0.0000278 0.004569 -0.0089274 0.0089831 24526 91
Placebo 2 0.006823 0.0051979 -0.0033649 0.0170109 21429 79
Placebo 3 -0.0031506 0.0038482 -0.010693 0.0043917 18344 76

Note: de Chaisemartin and D’Haultfoeuille (2020) approach for assessing and addressing imple-
mented in the did multiplegt package in STATA and DIDmultiplegt package in R. Under
the common trends assumption, beta estimates a weighted sum of 400 ATTs. 396 ATTs receive
a positive weight, and 4 receive a negative weight. The sum of the positive weights is equal to
1.0002424. The sum of the negative weights is equal to -.00024243. beta is compatible with a DGP
where the average of those ATTs is equal to 0, while their standard deviation is equal to .13523432.
beta is compatible with a DGP where those ATTs all are of a di↵erent sign than beta, while their
standard deviation is equal to 30.161087. Takeaway: After using this method, we see no evidence
of substantial or significant e↵ects of mass shootings on electoral outcomes. E↵ect 0 is not robust
to other approaches for adjusting for potential violations of the parallel trends assumption—e.g.
Rambachan and Roth (2021).
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Figure Tables

Table S10: Figure 1a Results

treatment coef stderr tstat pval N r2

YOUSAF .029 .008 3.634 0 15570 .81
GMAL .055 .009 5.964 0 31040 .762
HHB .026 .011 2.493 .013 30625 .657

Table S11: Figure 1b Results

treatment coef stderr tstat pval N r2

YOUSAF .058 .005 12.382 0 15570 .812
GMAL .087 .012 7.493 0 31040 .763
HHB .078 .015 5.303 0 30625 .657
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Table S12: Figure 3a Results

treatment study Years
Prior

coef stderr tstat pval N r2

All mass shootings YOUSAF 12 .002 .006 .413 .679 6132 .971
All mass shootings YOUSAF 8 .016 .006 2.723 .006 9270 .932
All mass shootings YOUSAF 4 .014 .007 2.088 .037 12432 .796
Rampage school No Fatalities GMAL 28 -.012 .012 -.974 .33 9305 .84
Rampage school No Fatalities GMAL 24 .017 .009 1.842 .066 12408 .849
Rampage school No Fatalities GMAL 20 .03 .007 4.493 0 15511 .854
Rampage school No Fatalities GMAL 16 .025 .01 2.381 .017 18614 .843
Rampage school No Fatalities GMAL 12 .026 .01 2.511 .012 18616 .881
Rampage school No Fatalities GMAL 8 .032 .01 3.297 .001 18618 .841
Rampage school No Fatalities GMAL 4 .041 .012 3.487 0 18619 .856
Rampage school Fatalities GMAL 28 .007 .01 .673 .501 9305 .84
Rampage school Fatalities GMAL 24 .005 .007 .77 .442 12408 .849
Rampage school Fatalities GMAL 20 .015 .008 1.866 .062 15511 .854
Rampage school Fatalities GMAL 16 .025 .008 3.185 .001 18614 .843
Rampage school Fatalities GMAL 12 .021 .009 2.402 .016 18616 .881
Rampage school Fatalities GMAL 8 .033 .01 3.309 .001 18618 .841
Rampage school Fatalities GMAL 4 .027 .009 2.806 .005 18619 .856
Rampage school shootings GMAL 28 -.001 .008 -.173 .863 9305 .84
Rampage school shootings GMAL 24 .011 .006 1.877 .061 12408 .849
Rampage school shootings GMAL 20 .022 .005 4.075 0 15511 .854
Rampage school shootings GMAL 16 .026 .006 4.176 0 18614 .844
Rampage school shootings GMAL 12 .024 .007 3.507 0 18616 .881
Rampage school shootings GMAL 8 .034 .007 4.778 0 18618 .841
Rampage school shootings GMAL 4 .034 .007 4.534 0 18619 .856
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Table S13: Figure 3b Results

treatment study Years
Prior

coef stderr tstat pval N r2

All mass shootings YOUSAF 12 .01 .004 2.436 .015 6132 .971
All mass shootings YOUSAF 8 .02 .005 4.078 0 9270 .932
All mass shootings YOUSAF 4 .027 .006 4.482 0 12432 .797
Rampage school No Fatalities GMAL 28 -.012 .012 -.974 .33 9305 .84
Rampage school No Fatalities GMAL 24 .017 .009 1.842 .066 12408 .849
Rampage school No Fatalities GMAL 20 .03 .007 4.493 0 15511 .854
Rampage school No Fatalities GMAL 16 .025 .01 2.381 .017 18614 .843
Rampage school No Fatalities GMAL 12 .026 .01 2.511 .012 18616 .881
Rampage school No Fatalities GMAL 8 .032 .01 3.297 .001 18618 .841
Rampage school No Fatalities GMAL 4 .041 .012 3.487 0 18619 .856
Rampage school Fatalities GMAL 28 .006 .01 .56 .575 9305 .84
Rampage school Fatalities GMAL 24 .003 .007 .441 .659 12408 .849
Rampage school Fatalities GMAL 20 .014 .008 1.799 .072 15511 .854
Rampage school Fatalities GMAL 16 .025 .008 3.249 .001 18614 .843
Rampage school Fatalities GMAL 12 .021 .008 2.511 .012 18616 .881
Rampage school Fatalities GMAL 8 .033 .01 3.39 .001 18618 .841
Rampage school Fatalities GMAL 4 .026 .009 2.874 .004 18619 .856
Rampage school shootings GMAL 28 .013 .01 1.3 .194 9305 .84
Rampage school shootings GMAL 24 .031 .006 5.429 0 12408 .849
Rampage school shootings GMAL 20 .039 .006 6.817 0 15511 .855
Rampage school shootings GMAL 16 .043 .007 6.096 0 18614 .844
Rampage school shootings GMAL 12 .048 .007 7.324 0 18616 .881
Rampage school shootings GMAL 8 .066 .008 8.174 0 18618 .842
Rampage school shootings GMAL 4 .063 .01 6.376 0 18619 .857
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Table S14: Figure 3c Results

treatment study Years
Prior

coef stderr tstat pval N r2

All mass shootings YOUSAF 8 .009 .005 1.699 .089 9270 .991
All mass shootings YOUSAF 4 -.004 .006 -.64 .522 12432 .912
Rampage school No Fatalities GMAL 28 -.007 .015 -.433 .665 9305 .975
Rampage school No Fatalities GMAL 24 .015 .011 1.343 .18 12408 .91
Rampage school No Fatalities GMAL 20 .02 .008 2.357 .019 15511 .909
Rampage school No Fatalities GMAL 16 -.002 .008 -.215 .83 18614 .91
Rampage school No Fatalities GMAL 12 -.004 .006 -.638 .523 18616 .945
Rampage school No Fatalities GMAL 8 -.007 .007 -1.101 .271 18618 .942
Rampage school No Fatalities GMAL 4 .008 .006 1.34 .18 18619 .973
Rampage school Fatalities GMAL 28 -.015 .015 -.999 .318 9305 .975
Rampage school Fatalities GMAL 24 -.005 .011 -.483 .629 12408 .91
Rampage school Fatalities GMAL 20 .001 .009 .15 .881 15511 .909
Rampage school Fatalities GMAL 16 .009 .006 1.622 .105 18614 .91
Rampage school Fatalities GMAL 12 0 .007 -.072 .942 18616 .945
Rampage school Fatalities GMAL 8 .001 .007 .148 .883 18618 .942
Rampage school Fatalities GMAL 4 -.009 .005 -1.955 .051 18619 .973
Rampage school shootings GMAL 28 -.011 .011 -1.031 .303 9305 .975
Rampage school shootings GMAL 24 .004 .008 .537 .591 12408 .91
Rampage school shootings GMAL 20 .01 .007 1.449 .147 15511 .909
Rampage school shootings GMAL 16 .005 .005 1.046 .296 18614 .91
Rampage school shootings GMAL 12 -.002 .005 -.398 .691 18616 .945
Rampage school shootings GMAL 8 -.003 .005 -.5 .617 18618 .942
Rampage school shootings GMAL 4 -.002 .004 -.529 .597 18619 .973
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Table S15: Figure 3d Results

treatment study Years
Prior

coef stderr tstat pval N r2

All mass shootings YOUSAF 8 .002 .006 .262 .794 9270 .991
All mass shootings YOUSAF 4 -.005 .009 -.553 .58 12432 .912
Rampage school No Fatalities GMAL 28 -.007 .015 -.488 .625 9305 .975
Rampage school No Fatalities GMAL 24 .016 .011 1.422 .155 12408 .91
Rampage school No Fatalities GMAL 20 .02 .008 2.444 .015 15511 .909
Rampage school No Fatalities GMAL 16 -.001 .008 -.089 .929 18614 .91
Rampage school No Fatalities GMAL 12 -.004 .006 -.628 .53 18616 .945
Rampage school No Fatalities GMAL 8 -.008 .007 -1.18 .238 18618 .942
Rampage school No Fatalities GMAL 4 .007 .006 1.181 .238 18619 .973
Rampage school Fatalities GMAL 28 -.012 .015 -.816 .415 9305 .975
Rampage school Fatalities GMAL 24 -.01 .01 -1.026 .305 12408 .91
Rampage school Fatalities GMAL 20 0 .008 -.034 .973 15511 .909
Rampage school Fatalities GMAL 16 .012 .006 1.874 .061 18614 .91
Rampage school Fatalities GMAL 12 0 .006 -.008 .994 18616 .945
Rampage school Fatalities GMAL 8 0 .006 .059 .953 18618 .942
Rampage school Fatalities GMAL 4 -.009 .004 -2.162 .031 18619 .973
Rampage school shootings GMAL 28 -.015 .017 -.885 .376 9305 .975
Rampage school shootings GMAL 24 .012 .013 .91 .363 12408 .91
Rampage school shootings GMAL 20 .011 .007 1.52 .129 15511 .909
Rampage school shootings GMAL 16 .001 .009 .107 .915 18614 .91
Rampage school shootings GMAL 12 .002 .007 .333 .739 18616 .945
Rampage school shootings GMAL 8 .004 .008 .458 .647 18618 .942
Rampage school shootings GMAL 4 .001 .007 .101 .92 18619 .973
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Table S16: Figure 3e Results

treatment study Years
Prior

coef stderr tstat pval N r2

All mass shootings YOUSAF 8 .009 .008 1.196 .232 9270 .991
All mass shootings YOUSAF 4 -.004 .007 -.522 .601 12432 .912
Rampage school No Fatalities GMAL 28 -.007 .022 -.305 .76 9305 .975
Rampage school No Fatalities GMAL 24 .015 .014 1.095 .274 12408 .91
Rampage school No Fatalities GMAL 20 .02 .01 2.04 .041 15511 .909
Rampage school No Fatalities GMAL 16 -.002 .009 -.196 .845 18614 .91
Rampage school No Fatalities GMAL 12 -.004 .007 -.578 .563 18616 .945
Rampage school No Fatalities GMAL 8 -.007 .008 -.99 .322 18618 .942
Rampage school No Fatalities GMAL 4 .008 .007 1.194 .233 18619 .973
Rampage school Fatalities GMAL 28 -.015 .022 -.705 .481 9305 .975
Rampage school Fatalities GMAL 24 -.005 .013 -.394 .694 12408 .91
Rampage school Fatalities GMAL 20 .001 .01 .13 .897 15511 .909
Rampage school Fatalities GMAL 16 .009 .006 1.448 .148 18614 .91
Rampage school Fatalities GMAL 12 -.001 .008 -.071 .944 18616 .945
Rampage school Fatalities GMAL 8 .001 .008 .126 .9 18618 .942
Rampage school Fatalities GMAL 4 -.009 .005 -1.752 .08 18619 .973
Rampage school shootings GMAL 28 -.011 .015 -.727 .467 9305 .975
Rampage school shootings GMAL 24 .004 .009 .438 .661 12408 .91
Rampage school shootings GMAL 20 .01 .008 1.254 .21 15511 .909
Rampage school shootings GMAL 16 .005 .006 .932 .352 18614 .91
Rampage school shootings GMAL 12 -.002 .006 -.365 .715 18616 .945
Rampage school shootings GMAL 8 -.003 .006 -.455 .649 18618 .942
Rampage school shootings GMAL 4 -.002 .004 -.478 .633 18619 .973

34



Table S17: Figure 3f Results

treatment study Years
Prior

coef stderr tstat pval N r2

All mass shootings YOUSAF 8 .002 .008 .182 .855 9270 .991
All mass shootings YOUSAF 4 -.005 .011 -.45 .653 12432 .912
Rampage school No Fatalities GMAL 28 -.009 .02 -.427 .669 9305 .975
Rampage school No Fatalities GMAL 24 .012 .014 .836 .403 12408 .91
Rampage school No Fatalities GMAL 20 .02 .009 2.124 .034 15511 .909
Rampage school No Fatalities GMAL 16 0 .008 .05 .96 18614 .91
Rampage school No Fatalities GMAL 12 -.004 .007 -.623 .534 18616 .945
Rampage school No Fatalities GMAL 8 -.006 .008 -.777 .437 18618 .942
Rampage school No Fatalities GMAL 4 .005 .007 .796 .426 18619 .973
Rampage school Fatalities GMAL 28 -.005 .02 -.271 .786 9305 .975
Rampage school Fatalities GMAL 24 -.01 .015 -.68 .496 12408 .91
Rampage school Fatalities GMAL 20 .003 .009 .345 .73 15511 .909
Rampage school Fatalities GMAL 16 .008 .006 1.179 .239 18614 .91
Rampage school Fatalities GMAL 12 .001 .007 .185 .853 18616 .945
Rampage school Fatalities GMAL 8 .004 .008 .542 .588 18618 .942
Rampage school Fatalities GMAL 4 -.009 .005 -1.835 .067 18619 .973
Rampage school shootings GMAL 28 -.015 .023 -.622 .534 9305 .975
Rampage school shootings GMAL 24 .012 .016 .744 .457 12408 .91
Rampage school shootings GMAL 20 .011 .009 1.316 .188 15511 .909
Rampage school shootings GMAL 16 .001 .01 .089 .929 18614 .91
Rampage school shootings GMAL 12 .002 .007 .281 .779 18616 .945
Rampage school shootings GMAL 8 .004 .009 .4 .69 18618 .942
Rampage school shootings GMAL 4 .001 .007 .082 .935 18619 .973
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Table S18: Figure 4 Results

Var Coef. Std. Err. t p LB95 UB95

lead9 -0.146 0.023 -6.350 0.000 -0.190 -0.101
lead8 -0.132 0.017 -7.770 0.000 -0.166 -0.099
lead7 -0.126 0.013 -9.800 0.000 -0.151 -0.101
lead6 -0.102 0.013 -8.030 0.000 -0.127 -0.077
lead5 -0.068 0.013 -5.360 0.000 -0.092 -0.043
lead4 -0.053 0.010 -5.070 0.000 -0.073 -0.032
lead3 -0.040 0.008 -4.930 0.000 -0.056 -0.024
lead2 -0.008 0.006 -1.330 0.182 -0.021 0.004
lag0 0.030 0.004 7.340 0.000 0.022 0.038
lag1 0.037 0.008 4.780 0.000 0.022 0.052
lag2 0.041 0.013 3.180 0.001 0.016 0.066
lag3 0.048 0.018 2.710 0.007 0.013 0.083
lag4 0.069 0.019 3.530 0.000 0.030 0.107
lag5 0.101 0.020 4.930 0.000 0.061 0.141
lag6 0.117 0.023 5.130 0.000 0.072 0.161
lag7 0.130 0.028 4.710 0.000 0.076 0.184
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Table S19: Figure 5a Results

treatment coef stderr tstat pval N r2

All school shootings .001 .01 .117 .907 30625 .784
All mass shootings -.002 .007 -.289 .773 15570 .871
Rampage school shootings w No Fatalities .002 .006 .365 .715 18620 .967
Rampage school shootings w Fatalities .01 .006 1.709 .088 18620 .968
Rampage school shootings .007 .004 1.772 .076 18620 .967

Table S20: Figure 5b Results

treatment coef stderr tstat pval N r2

All school shootings .001 .011 .109 .913 30625 .784
All mass shootings -.002 .008 -.253 .8 15570 .871
Rampage school shootings w No Fatalities .002 .006 .321 .748 18620 .967
Rampage school shootings w Fatalities .01 .007 1.524 .128 18620 .967
Rampage school shootings .007 .005 1.578 .115 18620 .967

Table S21: Figure 5c Results

treatment coef stderr tstat pval N r2

All school shootings .008 .017 .456 .649 27354 .196
All mass shootings 0 .013 .011 .991 12432 .277
Rampage school shootings w No Fatalities -.006 .008 -.752 .452 18619 .689
Rampage school shootings w Fatalities .019 .008 2.424 .015 18619 .689
Rampage school shootings .01 .006 1.569 .117 18619 .689

Table S22: Figure 5d Results

treatment coef stderr tstat pval N r2

All school shootings .008 .018 .426 .67 27354 .196
All mass shootings 0 .017 .008 .993 12432 .277
Rampage school shootings w No Fatalities -.006 .009 -.674 .501 18619 .689
Rampage school shootings w Fatalities .019 .009 2.167 .03 18619 .689
Rampage school shootings .01 .007 1.402 .161 18619 .689

37



Table S23: Figure 6a Results

Var Coef. Std. Err. t p LB95 UB95

k eq m6 -0.01 0.01 -1.45 0.15 -0.02 0.00
k eq m5 -0.01 0.01 -0.87 0.38 -0.02 0.01
k eq m4 0.00 0.01 -0.75 0.45 -0.02 0.01
k eq m3 -0.01 0.01 -1.66 0.10 -0.02 0.00
k eq m2 0.00 0.00 -0.91 0.36 -0.01 0.00
k eq p0 0.01 0.00 1.85 0.07 0.00 0.02
k eq p1 0.01 0.01 1.28 0.20 -0.01 0.03
k eq p2 0.01 0.01 0.74 0.46 -0.01 0.03
k eq p3 0.00 0.01 0.28 0.78 -0.02 0.02
k eq p4 0.01 0.01 1.01 0.31 -0.01 0.02
k eq p5 0.01 0.01 1.81 0.07 0.00 0.03
k eq p6 0.03 0.02 1.68 0.09 -0.01 0.07

Table S24: Figure 6b Results

Var Coef. Std. Err. t p LB95 UB95

k eq m6 -.0113595 .0086608 -1.31 0.190 -.0283409 .005622
k eq m5 -.0130866 .0100614 -1.30 0.193 -.0328143 .0066411
k eq m4 -.0069502 .0083399 -0.83 0.405 -.0233024 .009402
k eq m3 -.0096858 .0067104 -1.44 0.149 -.0228431 .0034714
k eq m2 -.00139 .0041335 -0.34 0.737 -.0094947 .0067147
k eq p0 .0101121 .0054591 1.85 0.064 -.0005917 .020816
k eq p1 .0099699 .0100398 0.99 0.321 -.0097154 .0296552
k eq p2 .0057723 .0132517 0.44 0.663 -.0202107 .0317553
k eq p3 -.0033458 .0127822 -0.26 0.794 -.0284081 .0217165
k eq p4 -.0018293 .0101831 -0.18 0.857 -.0217957 .018137
k eq p5 .0012657 .0113552 0.11 0.911 -.0209987 .0235302
k eq p6 .0065909 .0238612 0.28 0.782 -.0401945 .0533763
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Table S25: Figure 6c Results

Var Coef. Std. Err. t p LB95 UB95

k eq m6 -.0086642 .0099251 -0.87 0.383 -.0281245 .0107961
k eq m5 .0008727 .010344 0.08 0.933 -.0194091 .0211545
k eq m4 -.003458 .008579 -0.40 0.687 -.0202791 .0133632
k eq m3 -.0086557 .00732 -1.18 0.237 -.0230082 .0056968
k eq m2 -.0088006 .0066084 -1.33 0.183 -.0217579 .0041567
k eq p0 .0045428 .0076024 0.60 0.550 -.0103634 .019449
k eq p1 .0154326 .015197 1.02 0.310 -.0143646 .0452298
k eq p2 .0202693 .0193697 1.05 0.295 -.0177094 .058248
k eq p3 .0339329 .0225165 1.51 0.132 -.0102158 .0780815
k eq p4 .0547016 .0336609 1.63 0.104 -.0112983 .1207014
k eq p5 .0748566 .0397417 1.88 0.060 -.0030661 .1527792
k eq p6 .076861 .0480658 1.60 0.110 -.017383 .1711049

Table S26: Figure 6d Results

Var Coef. Std. Err. t p LB95 UB95

k eq m6 .0042553 .0171401 0.25 0.804 -.0293517 .0378622
k eq m5 .0032087 .0168424 0.19 0.849 -.0298145 .036232
k eq m4 .0000179 .0145303 0.00 0.999 -.0284721 .0285079
k eq m3 .0092445 .0131328 0.70 0.482 -.0165053 .0349943
k eq m2 -.0000906 .0108249 -0.01 0.993 -.0213152 .0211341
k eq p0 .0036256 .0111273 0.33 0.745 -.018192 .0254433
k eq p1 .0163643 .0175472 0.93 0.351 -.0180409 .0507695
k eq p2 .0082639 .0235333 0.35 0.725 -.0378785 .0544064
k eq p3 .0118279 .0282368 0.42 0.675 -.0435367 .0671925
k eq p4 .0080626 .0281694 0.29 0.775 -.0471699 .0632952
k eq p5 .0123471 .0269939 0.46 0.647 -.0405805 .0652747
k eq p6 -.0076323 .0350421 -0.22 0.828 -.0763403 .0610756
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Table S27: Figure 7a Results

Time N ATT ATT sd p LB95 UB95

-10 85 -0.016 0.017 0.336 -0.050 0.017
-9 85 0.010 0.013 0.432 -0.017 0.034
-8 86 -0.003 0.015 0.856 -0.034 0.025
-7 89 0.027 0.011 0.017 0.002 0.048
-6 92 -0.002 0.015 0.914 -0.030 0.024
-5 95 0.046 0.011 0.000 0.024 0.068
-4 100 0.002 0.019 0.908 -0.038 0.038
-3 103 0.010 0.015 0.521 -0.022 0.039
-2 106 0.023 0.017 0.170 -0.005 0.058
-1 110 0.038 0.014 0.007 0.012 0.068
0 110 0.022 0.022 0.309 -0.025 0.061
1 111 0.043 0.019 0.021 0.008 0.079
2 104 0.046 0.020 0.018 0.009 0.083
3 97 0.075 0.016 0.000 0.045 0.109
4 86 0.046 0.024 0.052 -0.003 0.090

Table S28: Figure 7b Results

Time N ATT ATT sd p LB95 UB

-10 85 -0.016 0.017 0.336 -0.050 0.017
-9 85 0.010 0.013 0.432 -0.017 0.034
-8 86 -0.003 0.015 0.856 -0.034 0.025
-7 89 0.027 0.011 0.017 0.002 0.048
-6 92 -0.002 0.015 0.914 -0.030 0.024
-5 95 0.046 0.011 0.000 0.024 0.068
-4 100 0.002 0.019 0.908 -0.038 0.038
-3 103 0.010 0.015 0.521 -0.022 0.039
-2 106 0.023 0.017 0.170 -0.005 0.058
-1 110 0.038 0.014 0.007 0.012 0.068
0 110 0.022 0.022 0.309 -0.025 0.061
1 111 0.043 0.019 0.021 0.008 0.079
2 104 0.046 0.020 0.018 0.009 0.083
3 97 0.075 0.016 0.000 0.045 0.109
4 86 0.046 0.024 0.052 -0.003 0.090
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Table S29: Figure 7c Results

Time N ATT ATT sd p LB95 UB95

-10 85 -0.011 0.006 0.103 -0.024 0.002
-9 85 -0.001 0.009 0.918 -0.017 0.016
-8 86 -0.002 0.010 0.873 -0.020 0.018
-7 89 0.012 0.006 0.057 0.001 0.026
-6 92 -0.012 0.006 0.047 -0.024 -0.001
-5 95 0.004 0.006 0.530 -0.006 0.017
-4 100 -0.001 0.007 0.848 -0.017 0.010
-3 103 -0.010 0.005 0.032 -0.019 -0.001
-2 106 0.003 0.006 0.632 -0.008 0.014
-1 110 0.001 0.006 0.885 -0.010 0.012
0 110 -0.007 0.008 0.394 -0.021 0.011
1 111 -0.003 0.008 0.738 -0.018 0.013
2 104 0.013 0.010 0.203 -0.006 0.036
3 97 0.015 0.008 0.047 0.000 0.031
4 86 0.010 0.009 0.276 -0.010 0.026

Table S30: Figure 7d Results

Time N ATT ATT sd p LB95 UB95

-10 85 -0.011 0.007 0.115 -0.023 0.003
-9 85 -0.001 0.009 0.916 -0.023 0.015
-8 86 -0.002 0.010 0.881 -0.019 0.022
-7 89 0.012 0.006 0.044 0.001 0.024
-6 92 -0.012 0.005 0.032 -0.021 0.000
-5 95 0.004 0.006 0.534 -0.009 0.017
-4 100 -0.001 0.006 0.822 -0.014 0.009
-3 103 -0.010 0.005 0.035 -0.020 -0.001
-2 106 0.003 0.005 0.607 -0.008 0.013
-1 110 0.001 0.006 0.888 -0.012 0.014
0 110 -0.007 0.008 0.427 -0.027 0.006
1 111 -0.003 0.007 0.721 -0.017 0.013
2 104 0.013 0.009 0.173 -0.005 0.030
3 97 0.015 0.008 0.061 0.000 0.031
4 86 0.010 0.009 0.261 -0.006 0.027
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Table S31: Figure 8a Results

lb ub M

0.98 7.88 Original
-2.15 4.66 0
-2.2 4.7 0.02
-2.35 4.86 0.04
-2.58 5.08 0.06
-2.85 5.36 0.08
-2.47 6.32 0.1

Table S32: Figure 8b Results

lb ub M

0.159 0.233 Original
-1 1 0
-1 1 0.5
-1 1 1
-1 1 1.5
-1 1 2
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Table S33: Figure 9a Results

Bacon treat Bacon control Bacon weight Bacon coef Bacon cgroup

1984 1988 8.70E-08 0.078856 Early vs Late
1988 1984 7.00E-07 -0.0695 Late vs Early
1984 1992 4.40E-08 -0.01871 Early vs Late
1992 1984 3.10E-07 -0.081747 Late vs Early
1988 1992 7.50E-08 -0.036729 Early vs Late
1992 1988 2.60E-07 0.006331 Late vs Early
1984 1996 1.30E-07 0.027982 Early vs Late
1996 1984 7.90E-07 -0.06679 Late vs Early
1988 1996 3.00E-07 -0.037058 Early vs Late
1996 1988 9.00E-07 0.016298 Late vs Early
1992 1996 5.60E-08 -0.028406 Early vs Late
1996 1992 1.10E-07 -0.020474 Late vs Early
1984 2000 2.90E-07 0.098948 Early vs Late
2000 1984 1.50E-06 -0.126772 Late vs Early
1988 2000 7.50E-07 0.019507 Early vs Late
2000 1988 1.90E-06 -0.022988 Late vs Early
1992 2000 1.90E-07 0.009956 Early vs Late
2000 1992 3.10E-07 -0.070383 Late vs Early
1996 2000 2.50E-07 0.044571 Early vs Late
2000 1996 3.10E-07 -0.032647 Late vs Early
1984 2004 3.30E-07 0.017506 Early vs Late
2004 1984 1.30E-06 -0.07576 Late vs Early
1988 2004 9.00E-07 -0.033137 Early vs Late
2004 1988 1.80E-06 0.023813 Late vs Early
1992 2004 2.50E-07 -0.028567 Early vs Late
2004 1992 3.40E-07 -0.031244 Late vs Early
1996 2004 4.50E-07 -0.006315 Early vs Late
2004 1996 4.50E-07 -0.002225 Late vs Early
2000 2004 4.70E-07 -0.052952 Early vs Late
2004 2000 3.70E-07 0.025412 Late vs Early
1984 2008 5.20E-07 0.046045 Early vs Late
2008 1984 1.60E-06 -0.04371 Late vs Early
1988 2008 1.50E-06 -0.034392 Early vs Late
2008 1988 2.20E-06 0.051818 Late vs Early
1992 2008 4.50E-07 -0.025771 Early vs Late
2008 1992 4.50E-07 -0.012751 Late vs Early
1996 2008 9.00E-07 0.008181 Early vs Late
2008 1996 6.70E-07 0.042243 Late vs Early
2000 2008 1.20E-06 -0.048998 Early vs Late
2008 2000 7.50E-07 0.062911 Late vs Early
2004 2008 6.70E-07 -0.005337 Early vs Late
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Table S33: Figure 9a Results

Bacon treat Bacon control Bacon weight Bacon coef Bacon cgroup

2008 2004 3.40E-07 0.030546 Late vs Early
1984 2012 6.60E-07 0.03054 Early vs Late
2012 1984 1.30E-06 -0.022081 Late vs Early
1988 2012 1.90E-06 -0.059704 Early vs Late
2012 1988 1.90E-06 0.071537 Late vs Early
1992 2012 6.10E-07 -0.04026 Early vs Late
2012 1992 4.10E-07 0.005722 Late vs Early
1996 2012 1.30E-06 -0.018156 Early vs Late
2012 1996 6.50E-07 0.053814 Late vs Early
2000 2012 2.00E-06 -0.081882 Early vs Late
2012 2000 8.10E-07 0.062162 Late vs Early
2004 2012 1.50E-06 -0.021788 Early vs Late
2012 2004 4.90E-07 0.046749 Late vs Early
2008 2012 1.10E-06 -0.005292 Early vs Late
2012 2008 3.20E-07 0.024165 Late vs Early
1984 2016 1.50E-06 0.06668 Early vs Late
2016 1984 1.50E-06 -0.031652 Late vs Early
1988 2016 4.50E-06 -0.044903 Early vs Late
2016 1988 2.30E-06 0.060484 Late vs Early
1992 2016 1.50E-06 -0.02972 Early vs Late
2016 1992 4.90E-07 -0.006247 Late vs Early
1996 2016 3.20E-06 -0.017525 Early vs Late
2016 1996 8.10E-07 0.040247 Late vs Early
2000 2016 5.40E-06 -0.084005 Early vs Late
2016 2000 1.10E-06 0.05345 Late vs Early
2004 2016 4.40E-06 -0.016841 Early vs Late
2016 2004 7.30E-07 0.042292 Late vs Early
2008 2016 4.50E-06 0.007404 Early vs Late
2016 2008 6.50E-07 0.017441 Late vs Early
2012 2016 2.80E-06 0.018737 Early vs Late
2016 2012 3.50E-07 -0.012987 Late vs Early
1984 Always 6.60E-08 0.178325 Always treated vs timing
1988 Always 2.00E-07 0.019616 Always treated vs timing
1992 Always 6.60E-08 0.052281 Always treated vs timing
1996 Always 1.50E-07 0.100607 Always treated vs timing
2000 Always 2.60E-07 0.080886 Always treated vs timing
2004 Always 2.20E-07 0.170976 Always treated vs timing
2008 Always 2.60E-07 0.219987 Always treated vs timing
2012 Always 2.20E-07 0.207109 Always treated vs timing
2016 Always 2.40E-07 0.175516 Always treated vs timing
1984 Never 0.000197 0.15999 Never treated vs timing
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Table S33: Figure 9a Results

Bacon treat Bacon control Bacon weight Bacon coef Bacon cgroup

1988 Never 0.0006 0.031788 Never treated vs timing
1992 Never 0.000197 0.070029 Never treated vs timing
1996 Never 0.00045 0.081049 Never treated vs timing
2000 Never 0.000781 0.017108 Never treated vs timing
2004 Never 0.000675 0.084976 Never treated vs timing
2008 Never 0.000787 0.114054 Never treated vs timing
2012 Never 0.00065 0.138089 Never treated vs timing
2016 Never 0.000731 0.13174 Never treated vs timing

Table S34: Figure 9b Results

Bacon treat Bacon control Bacon weight Bacon coef Bacon cgroup

2014 2012 5.60E-07 -0.05964 Late vs Early
2012 2010 6.50E-08 0.003213 Late vs Early
2008 2006 4.40E-07 0.085913 Late vs Early
2014 2004 9.30E-07 0.022325 Late vs Early
2012 2008 3.90E-07 0.039837 Late vs Early
2010 2008 8.10E-08 0.092414 Late vs Early
2014 2008 1.70E-06 -0.03245 Late vs Early
2008 2004 1.90E-07 0.107997 Late vs Early
2008 2002 7.30E-07 0.117028 Late vs Early
2014 2010 3.70E-07 -0.052226 Late vs Early
2016 2008 4.50E-07 -0.020182 Late vs Early
2016 2006 8.50E-07 -0.043381 Late vs Early
2010 2004 8.10E-08 0.117657 Late vs Early
2016 2014 4.30E-07 -0.020781 Late vs Early
2016 2004 2.30E-07 -0.004238 Late vs Early
2016 2012 2.30E-07 -0.074471 Late vs Early
2006 2004 1.70E-07 -0.011611 Late vs Early
2018 2002 9.20E-07 0.031138 Late vs Early
2018 2012 4.10E-07 -0.040066 Late vs Early
2018 2006 1.20E-06 -0.011648 Late vs Early
2010 2002 2.70E-07 0.118213 Late vs Early
2014 2002 2.80E-06 0.029688 Late vs Early
2018 2014 1.10E-06 0.040257 Late vs Early
2018 2004 3.20E-07 0.025082 Late vs Early
2018 2016 1.60E-07 0.044396 Late vs Early
2016 2002 6.60E-07 -0.022813 Late vs Early
2016 2010 1.10E-07 -0.094541 Late vs Early
2012 2006 8.70E-07 0.018694 Late vs Early
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Table S34: Figure 9b Results

Bacon treat Bacon control Bacon weight Bacon coef Bacon cgroup

2006 2002 8.50E-07 0.056135 Late vs Early
2014 2006 3.30E-06 -0.037409 Late vs Early
2004 2002 1.10E-07 0.089145 Late vs Early
2010 2006 2.40E-07 0.066528 Late vs Early
2012 2002 8.10E-07 0.10034 Late vs Early
2018 2008 6.90E-07 -0.023922 Late vs Early
2012 2004 2.60E-07 0.068792 Late vs Early
2018 2010 1.80E-07 -0.06747 Late vs Early
2006 2014 3.30E-06 -0.017836 Early vs Late
2004 2014 6.20E-07 0.020437 Early vs Late
2014 2018 7.40E-06 0.018665 Early vs Late
2006 2012 6.50E-07 -0.000757 Early vs Late
2002 2016 3.30E-07 -0.083052 Early vs Late
2008 2014 2.20E-06 0.050286 Early vs Late
2008 2012 3.90E-07 0.080038 Early vs Late
2004 2018 6.40E-07 0.023406 Early vs Late
2006 2010 1.50E-07 0.075553 Early vs Late
2006 2016 1.30E-06 -0.01 Early vs Late
2006 2018 3.70E-06 0.003769 Early vs Late
2002 2012 2.00E-07 0.049098 Early vs Late
2012 2016 6.80E-07 0.004417 Early vs Late
2016 2018 1.30E-06 0.019798 Early vs Late
2008 2016 9.10E-07 0.061464 Early vs Late
2010 2012 8.10E-08 0.004033 Early vs Late
2002 2010 5.40E-08 0.154867 Early vs Late
2002 2004 1.30E-08 -0.003687 Early vs Late
2004 2012 1.30E-07 0.048794 Early vs Late
2002 2014 9.30E-07 -0.0472 Early vs Late
2004 2006 4.90E-08 -0.014637 Early vs Late
2002 2006 1.20E-07 -0.013904 Early vs Late
2004 2016 2.30E-07 0.023891 Early vs Late
2012 2014 1.10E-06 -0.006498 Early vs Late
2006 2008 2.20E-07 0.036324 Early vs Late
2010 2016 2.80E-07 -0.01748 Early vs Late
2004 2008 6.50E-08 0.05269 Early vs Late
2012 2018 2.50E-06 0.031355 Early vs Late
2014 2016 1.50E-06 -0.027395 Early vs Late
2010 2014 6.20E-07 -0.004043 Early vs Late
2008 2018 2.70E-06 0.086759 Early vs Late
2004 2010 3.20E-08 0.189549 Early vs Late
2002 2008 1.20E-07 -0.01369 Early vs Late
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Table S34: Figure 9b Results

Bacon treat Bacon control Bacon weight Bacon coef Bacon cgroup

2010 2018 9.20E-07 0.023001 Early vs Late
2002 2018 9.20E-07 -0.041496 Early vs Late
2008 2010 6.50E-08 0.150448 Early vs Late
2014 Always 2.60E-06 -0.097161 Always treated vs timing
2004 Always 1.70E-07 0.000735 Always treated vs timing
2010 Always 2.70E-07 -0.060252 Always treated vs timing
2006 Always 1.00E-06 -0.030167 Always treated vs timing
2012 Always 7.80E-07 -0.065181 Always treated vs timing
2002 Always 2.40E-07 -0.190752 Always treated vs timing
2018 Always 8.20E-07 -0.030875 Always treated vs timing
2016 Always 6.00E-07 -0.066575 Always treated vs timing
2008 Always 7.80E-07 0.022318 Always treated vs timing
2004 Never 0.000114 0.084458 Never treated vs timing
2010 Never 0.000178 0.094548 Never treated vs timing
2006 Never 0.000673 0.057976 Never treated vs timing
2016 Never 0.000399 0.067682 Never treated vs timing
2012 Never 0.000513 0.107867 Never treated vs timing
2014 Never 0.00172 0.063393 Never treated vs timing
2008 Never 0.000513 0.134249 Never treated vs timing
2018 Never 0.000545 0.068284 Never treated vs timing
2002 Never 0.00016 0.023084 Never treated vs timing

Table S35: Figure 10a Results

Var Coef. Std. Err. t p LB95 UB95

g 16 0.018 0.013 1.350 0.176 -0.008 0.043
g 12 0.007 0.010 0.730 0.465 -0.012 0.027
g 8 -0.001 0.008 -0.080 0.933 -0.015 0.014
g0 0.015 0.007 1.960 0.050 0.000 0.029
g4 0.007 0.009 0.820 0.410 -0.010 0.024
g8 0.006 0.009 0.720 0.469 -0.011 0.023
g12 0.002 0.007 0.300 0.761 -0.012 0.016
g16 0.005 0.004 1.260 0.209 -0.003 0.013
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Table S36: Figure 10b Results

Var Coef. Std. Err. t p LB95 UB95
g 14 -0.029 0.033 -0.880 0.378 -0.095 0.036
g 12 0.002 0.034 0.050 0.959 -0.065 0.069
g 10 -0.009 0.027 -0.340 0.736 -0.062 0.044
g 8 -0.004 0.024 -0.150 0.880 -0.051 0.044
g 6 -0.001 0.021 -0.020 0.981 -0.041 0.040
g 4 -0.016 0.018 -0.910 0.365 -0.052 0.019
g0 -0.030 0.023 -1.320 0.187 -0.075 0.015
g2 -0.017 0.019 -0.910 0.365 -0.055 0.020
g4 -0.037 0.019 -1.950 0.051 -0.074 0.000
g6 -0.046 0.031 -1.470 0.141 -0.106 0.015
g8 -0.071 0.035 -2.030 0.042 -0.139 -0.002
g10 -0.039 0.029 -1.320 0.188 -0.096 0.019
g12 -0.042 0.024 -1.730 0.083 -0.089 0.005
g14 0.020 0.023 0.870 0.385 -0.025 0.065
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Given Figure 2 in the manuscript, some may wonder if we discard never treated units and,
instead, compare the treated units with the not-yet-but-eventually-treated units. Such could be
valid comparison group. If they were, we could, perhaps, avoid taking a stand on the type of
violations of parallel trends. Unfortunately, this is not the case. We still observe pre-treatmenet
imbalances among this group. These are of similar magnitude to the e↵ects observed post-treatment.
Once trends are added, any evidence for an e↵ect disappears. This is shown in the Table below.
Though this approach doesn’t work in ours, this comparison could be a viable option for applied
researchers in other settings.

Table S37: Using Eventually Treated as the Control Group

treatment time YearsPre model coef tstat stderr pval N r2

All school shootings Post -4 Quad
Trends

.006 1.378 .004 .171 990 .946

All school shootings Post -4 Linear
Trends

.006 1.471 .004 .144 990 .946

All school shootings Post -4 TWFE .018 2.452 .007 .016 990 .794
All school shootings Pre 20 TWFE .015 2.446 .006 .016 495 .886
All school shootings Pre 16 TWFE .009 1.585 .005 .116 594 .875
All school shootings Pre 12 TWFE .006 .992 .006 .324 693 .862
All school shootings Pre 8 TWFE .019 2.728 .007 .008 792 .837
All school shootings Pre 4 TWFE .01 1.539 .007 .127 891 .815
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